当前位置: X-MOL 学术Heat Mass Transfer › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Experimental and numerical studies of flow field and mass transfer phenomena on sinusoidal wavy walls
Heat and Mass Transfer ( IF 2.2 ) Pub Date : 2020-10-03 , DOI: 10.1007/s00231-020-02975-x
T. Yamagata , N. Fujisawa

The flow field and mass transfer phenomena on wavy walls are studied both experimentally and numerically for application to the pipe-wall thinning of nuclear power plant. The numerical simulations are carried out using four turbulence models and the results are compared with the velocity field on wavy planar wall measured by particle image velocimetry, and the mass transfer coefficient data on a pipe wall in literature. The near-wall velocity field of the wavy wall shows the flow separation and reattachment, and the high intensity turbulence energy generation over the recirculation region along the trough. The predictions by AKN model indicate better agreement with the experimental behavior of mean flow and turbulence characteristics on the wavy wall, while the other models fail to predict the reattachment behavior. Further attention is focused on the mass transfer enhancement behavior over the wavy pipe wall. It increases with an increased relative roughness associated with the growth of recirculation region and the increased turbulence energy. However, the growth of mass transfer coefficient saturates at large relative roughness because of the limitation of the recirculation region and the downstream shift of high turbulence energy region over the trough. The mass transfer behaviors on the wavy pipe wall are better predicted by the k-ω shear stress transport model.



中文翻译:

正弦波状波壁流场和传质现象的实验和数值研究

对波浪壁上的流场和传质现象进行了实验和数值研究,用于核电站的管壁薄化。使用四个湍流模型进行了数值模拟,并将结果与​​通过粒子图像测速仪测量的波浪形平面壁上的速度场以及文献中的管壁传质系数数据进行了比较。波浪形壁的近壁速度场显示出流动的分离和重新附着,以及沿着槽在再循环区域上产生的高强度湍流能量。AKN模型的预测表明与波浪壁上的平均流量和湍流特性的实验行为更好地吻合,而其他模型则无法预测重新附着行为。进一步的注意力集中在波浪形管壁上的传质增强行为上。随着再循环区域的增长和湍流能量的增加,相对粗糙度增加,它也随之增加。然而,由于再循环区域的限制以及高湍流能量区域在波谷上的下游移动,传质系数的增长在较大的相对粗糙度下饱和。波浪管壁上的传质行为可以通过以下方法更好地预测:由于再循环区域的限制和高湍流能量区域在波谷上的下游移动,传质系数的增长在较大的相对粗糙度下饱和。波浪管壁上的传质行为可以通过以下方法更好地预测:由于再循环区域的限制以及高湍流能量区域在波谷上的下游移动,传质系数的增长在相对大的粗糙度下饱和。波浪管壁上的传质行为可以通过以下方法更好地预测:k - ω剪切应力传递模型。

更新日期:2020-10-04
down
wechat
bug