当前位置: X-MOL 学术Journal of Vegetation Science › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The importance of dispersal and species establishment in vegetation dynamics and resilience
Journal of Vegetation Science ( IF 2.8 ) Pub Date : 2020-10-26 , DOI: 10.1111/jvs.12958
Péter Török 1, 2 , James M. Bullock 3 , Borja Jiménez‐Alfaro 4 , Judit Sonkoly 1, 2
Affiliation  

One of the challenges for biodiversity research in the next decades will be to understand the complexity of ecosystem change and resilience at different spatial scales (Díaz et al., 2020). To address the response of ecosystems to global change, investigating the dynamics of plant communities that structure natural and semi-natural vegetation (and provide habitat for other trophic levels) will be a pivotal task. However, we are still far from understanding the balance of processes that regulate plant community dynamics at local and landscape scales. One major research gap concerns the role that dispersal and establishment play in the resilience of communities subjected to natural and anthropogenic disturbances. The stability or the so-called “steady state” of a plant community is sustained by two major processes: resistance and resilience. While resistance is the ability of the community to withstand disturbance and retain community composition and functions by persistence; resilience (also called “recovery,” Oliver et al., 2015) is the ability of the community to recover its pre-disturbance composition and functions after the changes induced by disturbance (Enright et al., 2014). Resilience is supported by several regeneration processes including dispersal in space, dispersal in time, and germination and seedling recruitment in favourable microsites and vegetation gaps. These processes of plant dispersal and recruitment are summarised in Figure 1. Species dispersal, germination, seedling recruitment and thus, species assembly in plant communities can be understood in terms of a complex filtering scheme including both stochastic processes and trait-based habitat and biotic filtering (Kraft and Ackerley, 2014; Török et al., 2018a). Colonisation of new habitats during primary succession or species migration between similar habitat patches embedded in the landscape matrix is achieved by dispersal in space (Figure 1). Dispersal in space occurs either by abiotic media (most frequently wind and/or water) or by biotic vectors. In heavily altered landscapes with fragmented natural habitats, propagule limitation is not only caused by resource limitation; frequent anthropogenic disturbances also alter the type and availability of dispersal vectors (Figure 1), ultimately changing the size and composition of the propagule bank. At the local scale, dispersal in space can also be considered as a diaspore flow from the standing vegetation into the propagule banks. The effectiveness of dispersal in space depends heavily on a set of plant traits (Vittoz and Egler, 2007; Tamme et al., 2014), many of them concerning the diaspore (e.g. size, shape and other morphological features; von der Lippe and Kowarik, 2012; Sonkoly et al., 2017). The fate of diaspores settling in a specific community (either from local community rain or over longer distances) is strongly influenced by the composition and structure of the resident vegetation, propagule predation and the availability of regeneration niches for germination and establishment (Larson and Funk, 2016). The dispersing propagules are then trapped in the litter or incorporated into the soil propagule bank and either regenerate into new individuals or are preserved via dormancy over unsuitable periods by retaining their viability for a long time (dispersal in time via persistent seed bank). As a result of internal vegetation dynamics driven by natural or anthropogenic disturbances, the vegetation canopy periodically opens, and several regeneration niches become available for species recruitment (Grubb, 1977; Fenner and Thompson, 2005). These niches are not filled by random stochastic processes; vegetation regeneration is thus supported by dispersal in time and space, and species ́ abilities to establish new plants (through seed germination or vegetative reproduction). Besides the nutrient reserves stored in the propagule, the success of germination and seedling establishment also strongly depends on environmental factors such as soil properties including water and nutrient availability, soil compaction and structure, and light availability at the soil surface (Baskin and Baskin, 1998). All these processes regulate the spatio-temporal dynamics of plant communities at the local and landscape scales (Bullock et al., 2002). This Special Feature of the Journal of Vegetation Science was initiated at the thematic session on “Dispersal and plant reproduction in disturbance-driven vegetation dynamics” of the 61st Annual Symposium of the International Association for Vegetation Science (Bozeman, Montana, USA, 22–27 July 2018). The session had a relatively broad thematic and geographical coverage and demonstrated interest in the processes of propagule dispersal and plant

中文翻译:

扩散和物种建立在植被动态和恢复力中的重要性

未来几十年生物多样性研究的挑战之一将是了解不同空间尺度上生态系统变化和恢复力的复杂性(Díaz 等,2020)。为了解决生态系统对全球变化的响应,研究构成自然和半自然植被(并为其他营养级提供栖息地)的植物群落的动态将是一项关键任务。然而,我们仍远未了解在局部和景观尺度上调节植物群落动态的过程的平衡。一个主要的研究空白涉及分散和建立在遭受自然和人为干扰的社区的复原力中所起的作用。植物群落的稳定性或所谓的“稳定状态”由两个主要过程维持:抗性和恢复力。而抵抗力是社区抵御干扰并通过持久性保持社区组成和功能的能力;复原力(也称为“恢复”,Oliver 等人,2015 年)是社区在干扰引起的变化后恢复其干扰前组成和功能的能力(Enright 等人,2014 年)。复原力受到多种再生过程的支持,包括空间扩散、时间扩散以及在有利的微型地点和植被间隙中发芽和幼苗补充。图 1 总结了植物传播和补充的这些过程。 物种传播、发芽、幼苗补充,因此,植物群落中的物种组装可以通过复杂的过滤方案来理解,包括随机过程和基于特征的栖息地和生物过滤(Kraft 和 Ackerley,2014;Török 等,2018a)。在嵌入在景观矩阵中的类似栖息地斑块之间的初级演替或物种迁移期间,新栖息地的殖民化是通过空间扩散来实现的(图 1)。通过非生物介质(最常见的是风和/或水)或生物载体在空间中扩散。在自然栖息地支离破碎的严重改变的景观中,繁殖限制不仅是由资源限制引起的;频繁的人为干扰也会改变传播媒介的类型和可用性(图 1),最终改变繁殖体库的大小和组成。在局部尺度上,在空间中的扩散也可以被认为是从站立的植被到繁殖体的水铝石流。空间扩散的有效性在很大程度上取决于一组植物性状(Vittoz 和 Egler,2007 年;Tamme 等人,2014 年),其中许多与水铝石有关(例如大小、形状和其他形态特征;von der Lippe 和 Kowarik ,2012 年;Sonkoly 等人,2017 年)。定居在特定社区(来自当地社区雨水或更长距离)的水硬铝石的命运受到常驻植被的组成和结构、繁殖捕食以及用于发芽和建立的再生生态位的可用性的强烈影响(Larson 和 Funk, 2016)。然后,分散的繁殖体被困在垫料中或结合到土壤繁殖体库中,然后再生成新的个体,或者通过长时间保持活力(通过持久的种子库及时传播)在不合适的时期通过休眠得以保存。由于自然或人为干扰驱动的内部植被动态,植被冠层会定期打开,并且几个更新生态位可用于物种补充(Grubb,1977;Fenner 和 Thompson,2005)。这些壁龛不是由随机随机过程填充的;因此,植被再生得到时间和空间的分散以及物种建立新植物的能力(通过种子发芽或营养繁殖)的支持。除了储存在繁殖体中的营养储备外,发芽和幼苗建立的成功还很大程度上取决于环境因素,例如土壤特性,包括水和养分的有效性、土壤压实和结构,以及土壤表面的光照有效性(Baskin 和 Baskin,1998 年)。所有这些过程都在局部和景观尺度上调节植物群落的时空动态(Bullock 等,2002)。《植被科学杂志》的这一特刊是在国际植被科学协会第 61 届年度研讨会(美国蒙大拿州博兹曼,22-27 2018 年 7 月)。该会议具有相对广泛的主题和地理覆盖范围,并表现出对繁殖体传播和植物传播过程的兴趣
更新日期:2020-10-26
down
wechat
bug