当前位置: X-MOL 学术Comput. Biol. Med. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Micropolar pulsatile blood flow conveying nanoparticles in a stenotic tapered artery: NON-Newtonian pharmacodynamic simulation
Computers in Biology and Medicine ( IF 7.7 ) Pub Date : 2020-10-02 , DOI: 10.1016/j.compbiomed.2020.104025
B Vasu 1 , Ankita Dubey 1 , O Anwar Bég 2 , Rama Subba Reddy Gorla 3
Affiliation  

Two-dimensional rheological laminar hemodynamics through a diseased tapered artery with a mild stenosis present is simulated theoretically and computationally. The effect of different metallic nanoparticles homogeneously suspended in the blood is considered, motivated by drug delivery (pharmacology) applications. The Eringen micropolar model has been discussed for hemorheological characteristics in the whole arterial region. The conservation equations for mass, linear momentum, angular momentum (micro-rotation), and energy and nanoparticle species are normalized by employing suitable non-dimensional variables. The transformed equations are solved numerically subject to physically appropriate boundary conditions using the finite element method with the variational formulation scheme available in the FreeFEM++ code. A good correlation is achieved between the FreeFEM++ computations and existing results. The effect of selected parameters (taper angle, Prandtl number, Womersley parameter, pulsatile constants, and volumetric concentration) on velocity, temperature, and micro-rotational (Eringen angular) velocity has been calculated for a stenosed arterial segment. Wall shear stress, volumetric flow rate, and hemodynamic impedance of blood flow are also computed. Colour contours and graphs are employed to visualize the simulated blood flow characteristics. It is observed that by increasing Prandtl number (Pr), the micro-rotational velocity decreases i.e., microelement (blood cell) spin is suppressed. Wall shear stress decreases with the increment in pulsatile parameters (B and e), whereas linear velocity increases with a decrement in these parameters. Furthermore, the velocity decreases in the tapered region with elevation in the Womersley parameter (α). The simulations are relevant to transport phenomena in pharmacology and nano-drug targeted delivery in hematology.



中文翻译:

在狭窄的锥形动脉中微极性脉动血流输送纳米粒子:非牛顿药效学模拟

在理论上和计算上模拟了通过患病的细小狭窄狭窄动脉的二维流变层流动力学。考虑到均匀悬浮在血液中的不同金属纳米颗粒的作用,这是受药物输送(药理学)应用的推动。已经讨论了Eringen微极模型在整个动脉区域的血液流变学特征。质量,线性动量,角动量(微旋转)以及能量和纳米粒子种类的守恒方程通过采用合适的无量纲变量进行归一化。使用有限元方法和FreeFEM ++代码中可用的变分方案,在物理上适合边界条件的条件下对变换后的方程进行数值求解。FreeFEM ++计算与现有结果之间实现了良好的相关性。对于狭窄的动脉节段,已经计算出所选参数(锥角,普兰特数,Womersley参数,脉动常数和体积浓度)对速度,温度和微旋转(Eringen角)速度的影响。还计算壁切应力,体积流量和血流的血流动力学阻抗。颜色轮廓和图形用于可视化模拟的血流特征。据观察,通过增加Prandtl数(并且已计算出狭窄的动脉节段的微旋转(Eringen角)速度。还计算壁切应力,体积流量和血流的血流动力学阻抗。颜色轮廓和图形用于可视化模拟的血流特征。据观察,通过增加Prandtl数(并且已计算出狭窄的动脉节段的微旋转(Eringen角)速度。还计算壁切应力,体积流量和血流的血流动力学阻抗。颜色轮廓和图形用于可视化模拟的血流特征。据观察,通过增加Prandtl数(Pr)时,微旋转速度降低,即抑制了微元素(血细胞)自旋。壁剪切应力随着脉动参数(B和e)的增加而减小,而线速度随这些参数的减小而增加。此外,速度在锥形区域中随着Womersley参数(α)的升高而降低。该模拟与药理学中的转运现象和血液学中的纳米药物靶向递送有关。

更新日期:2020-10-15
down
wechat
bug