当前位置: X-MOL 学术Am. Mineral. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
An evolutionary system of mineralogy. Part II: Interstellar and solar nebula primary condensation mineralogy (>4.565 Ga)
American Mineralogist ( IF 3.1 ) Pub Date : 2020-10-01 , DOI: 10.2138/am-2020-7447
Shaunna M Morrison 1 , Robert M Hazen 1
Affiliation  

The evolutionary system of mineralogy relies on varied physical and chemical attributes, including trace elements, isotopes, solid and fluid inclusions, and other information-rich characteristics, to understand processes of mineral formation and to place natural condensed phases in the deep-time context of planetary evolution. Part I of this system reviewed the earliest refractory phases that condense at T > 1000 K within the turbulent expanding and cooling atmospheres of highly evolved stars. Part II considers the subsequent formation of primary crystalline and amorphous phases by condensation in three distinct mineral-forming environments, each of which increased mineralogical diversity and distribution prior to the accretion of planetesimals >4.5 billion years ago. Interstellar molecular solids: Varied crystalline and amorphous molecular solids containing primarily H, C, O, and N are observed to condense in cold, dense molecular clouds in the interstellar medium (10 < T < 20 K; P < 10–13 atm). With the possible exception of some nanoscale organic condensates preserved in carbonaceous meteorites, the existence of these phases is documented primarily by telescopic observations of absorption and emission spectra of interstellar molecules in radio, microwave, or infrared wavelengths.Nebular and circumstellar ice: Evidence from infrared observations and laboratory experiments suggest that cubic H2O (“cubic ice”) condenses as thin crystalline mantles on oxide and silicate dust grains in cool, distant nebular and circumstellar regions where T ~100 K.Primary condensed phases of the inner solar nebula: The earliest phase of nebular mineralogy saw the formation of primary refractory minerals that solidified through high-temperature condensation (1100 < T < 1800 K; 10–6 < P < 10–2 atm) in the solar nebula more than 4.565 billion years ago. These earliest mineral phases originating in our solar system formed prior to the accretion of planetesimals and are preserved in calcium-aluminum-rich inclusions, ultra-refractory inclusions, and amoeboid olivine aggregates.Interstellar molecular solids: Varied crystalline and amorphous molecular solids containing primarily H, C, O, and N are observed to condense in cold, dense molecular clouds in the interstellar medium (10 < T < 20 K; P < 10–13 atm). With the possible exception of some nanoscale organic condensates preserved in carbonaceous meteorites, the existence of these phases is documented primarily by telescopic observations of absorption and emission spectra of interstellar molecules in radio, microwave, or infrared wavelengths.Nebular and circumstellar ice: Evidence from infrared observations and laboratory experiments suggest that cubic H2O (“cubic ice”) condenses as thin crystalline mantles on oxide and silicate dust grains in cool, distant nebular and circumstellar regions where T ~100 K.Primary condensed phases of the inner solar nebula: The earliest phase of nebular mineralogy saw the formation of primary refractory minerals that solidified through high-temperature condensation (1100 < T < 1800 K; 10–6 < P < 10–2 atm) in the solar nebula more than 4.565 billion years ago. These earliest mineral phases originating in our solar system formed prior to the accretion of planetesimals and are preserved in calcium-aluminum-rich inclusions, ultra-refractory inclusions, and amoeboid olivine aggregates.

中文翻译:

矿物学的进化系统。第二部分:星际和太阳星云初级凝结矿物学(>4.565 Ga)

矿物学的演化系统依赖于各种物理和化学属性,包括微量元素、同位素、固体和流体包裹体以及其他信息丰富的特征,以了解矿物形成的过程并将天然凝聚相置于矿物的深层时间背景中。行星演化。该系统的第一部分回顾了高度演化恒星的湍流膨胀和冷却大气中在 T > 1000 K 时凝结的最早的难熔相。第二部分考虑了在三种不同的矿物形成环境中通过凝结而形成的初级晶相和非晶相,每种环境在超过 45 亿年前的星子吸积之前都增加了矿物学的多样性和分布。星际分子固体:观察到主要含有 H、C、O 和 N 的各种结晶和无定形分子固体在星际介质中凝结成寒冷、致密的分子云(10 < T < 20 K;P < 10-13 atm)。除了碳质陨石中保存的一些纳米级有机凝聚物之外,这些相的存在主要是通过望远镜观测无线电、微波或红外波长的星际分子的吸收和发射光谱来记录的。星云和星周冰:来自红外的证据观测和实验室实验表明,立方水(“立方冰”)在温度约为 100 K 的寒冷、遥远的星云和星周区域中,在氧化物和硅酸盐尘埃颗粒上凝结成薄薄的结晶地幔。星云矿物学阶段见证了 45.65 亿年前太阳星云中通过高温凝结(1100 < T < 1800 K;10–6 < P < 10–2 atm)凝固的原生难熔矿物的形成。这些起源于太阳系的最早的矿物相在星子吸积之前形成,并保存在富含钙铝的包裹体、超耐火包裹体和变形橄榄石聚集体中。星际分子固体:主要含有 H 的各种结晶和无定形分子固体据观察,C、O 和 N 在星际介质中凝结成寒冷、致密的分子云(10 < T < 20 K;P < 10-13 atm)。除了碳质陨石中保存的一些纳米级有机凝聚物之外,这些相的存在主要是通过望远镜观测无线电、微波或红外波长的星际分子的吸收和发射光谱来记录的。星云和星周冰:来自红外的证据观测和实验室实验表明,立方水(“立方冰”)在温度约为 100 K 的较冷、遥远的星云和星周区域中的氧化物和硅酸盐尘埃颗粒上凝结为薄结晶地幔。太阳内部星云的主要凝结相:星云矿物学的最早阶段是在 45.65 亿年前太阳星云中通过高温凝结(1100 < T < 1800 K;10-6 < P < 10-2 atm)凝固的原生难熔矿物的形成。这些起源于太阳系的最早的矿物相在星子吸积之前形成,并保存在富含钙铝的包裹体、超难熔包裹体和变形虫橄榄石聚集体中。
更新日期:2020-10-02
down
wechat
bug