当前位置: X-MOL 学术Heat Transf. Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The effect of structural improvement on the cooling capacity in three zones for wet cooling towers
Heat Transfer Research ( IF 1.7 ) Pub Date : 2020-10-01 , DOI: 10.1615/heattransres.2020034849
Yidan Xu , Zhengqing Zhang , Yuetao Shi , Ming Gao , Suoying He

To evaluate the effect of structural improvement on the cooling capacity in three zones for natural draft wet cooling towers (NDWCTs) accurately, based on field test, this paper conducted the comparative studies for the cooling capacity in every zone before and after structural improvement, and analyzed the changing rules of three parameters αs, αf and αr with crosswind. The results demonstrated that structural improvements could relieve the disadvantageous impact of crosswind on the different cooling zones, and this phenomenon becomes more effective under the high crosswind velocity. After structural improvement, when crosswind velocity changes from 3.27 m/s to 4.75 m/s, the αf increases by 2.5%, while the αr reduces by 3.52%, and the αs is relatively unchanged. At the maximum wind velocity of 4.75m/s, compared with before structural improvement, αf increases by 3.18% while αr decreases by 2.43%. In addition, the structural improvement slows down the decrease of heat and mass transfer coefficient in fillings zone with crosswind. When other conditions are the same, the effect of structural improvement is more remarkable at lower circulating water flow. In short, the structural improvement for the NDWCTs has different effects on the cooling capacity in each zone under different conditions. Conclusions from this study could be helpful to engineers to fulfill deep energy-saving research of the large-scale wet cooling tower in the engineering practice.

中文翻译:

结构改进对湿式冷却塔三个区域冷却能力的影响

为了准确评估结构改进对自然通风湿式冷却塔(NDWCT)三个区域的冷却能力的影响,基于现场测试,本文对结构改进前后每个区域的冷却能力进行了比较研究,并且利用侧风分析了三个参数αs,αf和αr的变化规律。结果表明,结构上的改进可以缓解侧风对不同冷却区的不利影响,并且这种现象在高侧风速度下变得更加有效。经过结构改进后,当侧风速度从3.27 m / s更改为4.75 m / s时,αf增加2.5%,而αr减少3.52%,并且αs相对不变。与结构改良前相比,在最大风速为4.75m / s时,αf增加3.18%,而αr减少2.43%。此外,结构上的改进减缓了带有侧风的填充区传热和传质系数的降低。当其他条件相同时,在较低的循环水流量下,结构改进的效果更加明显。简而言之,NDWCT的结构改进对不同条件下每个区域的冷却能力有不同的影响。这项研究的结论可能有助于工程师在工程实践中完成大型湿式冷却塔的深入节能研究。在较低的循环水流量下,结构改进的效果更为显着。简而言之,NDWCT的结构改进对不同条件下每个区域的冷却能力有不同的影响。这项研究的结论可能有助于工程师在工程实践中完成大型湿式冷却塔的深入节能研究。在较低的循环水流量下,结构改进的效果更为显着。简而言之,NDWCT的结构改进对不同条件下每个区域的冷却能力有不同的影响。这项研究的结论可能有助于工程师在工程实践中完成大型湿式冷却塔的深入节能研究。
更新日期:2020-10-02
down
wechat
bug