当前位置: X-MOL 学术Can. J. Chem. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Development of a hybrid pressure drop and liquid holdup phenomenological model for trickle bed reactors based on two-phase volume averaged equations
The Canadian Journal of Chemical Engineering ( IF 2.1 ) Pub Date : 2020-10-01 , DOI: 10.1002/cjce.23892
Binbin Qi 1 , Sebastián Uribe 1 , Omar Farid 1 , Muthanna Al‐Dahhan 1, 2
Affiliation  

A model with a high predictive quality to estimate pressure drops and liquid holdups in trickle bed reactors (TBR) is yet necessary to assist in design, up scaling, and the implementation of new processes tasks. The currently available models to estimate pressure drops and liquid holdups on TBRs exhibit important deviations, which lead to uncertainties in their applicability. To overcome the limitations in prediction deviations in the currently available models, a new model is developed based on the volume averaged two-phase transport equations in a porous media, as developed by Whitaker. In order to develop a model that could simultaneously predict pressure drops and liquid holdup with a high accuracy, the developed model was coupled with a modification of the extended slit model reported in the literature, leading to a new hybrid model with enhanced predictability. Experimentally determined pressure drops and liquid holdup in a column with a 0.14 m internal diameter and a height of 2 m, packed with different extrudate geometries, cylinders, trilobes, and quadlobes, were used to determine the model parameters and to verify the quality of the proposed hybrid model predictions. The developed model, when compared with the experimentally determined data of pressure drops showed mean squared errors (MSE) of 0.89%, 2.31%, and 1.22% for the cylinders, trilobes, and quadlobes particles, respectively, while the liquid holdups were predicted with MSEs of 0.03%, 0.16%, and 0.01% for the cylinders, trilobes, and quadlobes particles, respectively.

中文翻译:

基于两相体积平均方程的滴流床反应器混合压降和持液现象模型的建立

一个具有高预测质量的模型来估计滴流床反应器 (TBR) 中的压降和液体滞留量对于协助设计、扩大规模和实施新工艺任务仍然是必要的。目前可用的模型来估计 TBR 上的压降和液体滞留量表现出重要的偏差,这导致其适用性的不确定性。为了克服当前可用模型中预测偏差的局限性,Whitaker 开发了一种基于多孔介质中体积平均两相传输方程的新模型。为了开发一个可以同时高精度预测压降和持液率的模型,开发的模型与文献中报道的扩展狭缝模型的修改相结合,导致具有增强的可预测性的新混合模型。内径为 0.14 m,高度为 2 m,填充有不同的挤出物几何形状、圆柱体、三叶形和四叶形的柱中的压降和持液率实验确定,用于确定模型参数并验证质量提出的混合模型预测。与实验确定的压降数据相比,开发的模型显示圆柱、三叶和四叶颗粒的均方误差 (MSE) 分别为 0.89%、2.31% 和 1.22%,而液体滞留率则用圆柱、三叶和四叶粒子的 MSE 分别为 0.03%、0.16% 和 0.01%。14 m 内径和 2 m 高,填充有不同的挤出物几何形状、圆柱体、三叶形和四叶形,用于确定模型参数并验证所提出的混合模型预测的质量。与实验确定的压降数据相比,开发的模型显示圆柱、三叶和四叶颗粒的均方误差 (MSE) 分别为 0.89%、2.31% 和 1.22%,而液体滞留率则用圆柱、三叶和四叶粒子的 MSE 分别为 0.03%、0.16% 和 0.01%。14 m 内径和 2 m 高,填充有不同的挤出物几何形状、圆柱体、三叶形和四叶形,用于确定模型参数并验证所提出的混合模型预测的质量。与实验确定的压降数据相比,开发的模型显示圆柱、三叶和四叶颗粒的均方误差 (MSE) 分别为 0.89%、2.31% 和 1.22%,而液体滞留率则用圆柱、三叶和四叶粒子的 MSE 分别为 0.03%、0.16% 和 0.01%。
更新日期:2020-10-01
down
wechat
bug