当前位置: X-MOL 学术Nanoscale Res. Lett. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Sn 2+ Doping: A Strategy for Tuning of Fe 3 O 4 Nanoparticles Magnetization Dipping Temperature/Amplitude, Irreversibility, and Curie Point
Nanoscale Research Letters ( IF 5.418 ) Pub Date : 2020-10-01 , DOI: 10.1186/s11671-020-03423-9
Umaima S. H. Al-Kindi , Salim H. Al-Harthi , Hisham M. Widatallah , Mohamed E. Elzain , Myo T. Z. Myint , Htet H. Kyaw

Doped magnetite (SnxFe3-2/3xO4) nanoparticles (NPs) (12–50 nm) with different amount of Sn2+ ions (x) were synthesized using co-precipitation method. Sn2+ doping reduces the anticipated oxidation of Fe3O4 NPs to maghemite (γ-Fe2O3), making them attractive in several magnetic applications. Detailed characterizations during heating–cooling cycles revealed the possibility of tuning the unusual observed magnetization dipping temperature/amplitude, irreversibility, and Curie point of these NPs. We attribute this dip to the chemical reduction of γ-Fe2O3 at the NPs surfaces. Along with an increase in the dipping temperature, we found that doping with Sn2+ reduces the dipping amplitude, until it approximately disappears when x = 0.150. Based on the core-shell structure of these NPs, a phenomenological expression that combines both modified Bloch law (M = M0[1 − γ(T/TC)]β) and a modified Curie–Weiss law (M = − α[1/(TTC)δ]) is developed in order to explain the observed M-T behavior at different applied external magnetic fields and for different Sn2+ concentrations. By applying high enough magnetic field, the value of the parameters γ and δ ≈ 1 which are the same in modified Bloch and Curie–Weiss laws. They do not change with the magnetic field and depend only on the material structure and size. The power β for high magnetic field was 2.6 which is as expected for this size of nanoparticles with the core dominated magnetization. However, the β value fluctuates between 3 and 10 for small magnetic fields indicating an extra magnetic contribution from the shell structure presented by Curie–Weiss term. The parameter (α) has a very small value and it turns to negative values for high magnetic fields.



中文翻译:

Sn 2+掺杂:Fe 3 O 4纳米粒子磁化浸渍温度/幅度,不可逆性和居里点的调节策略

使用共沉淀法合成了不同数量的Sn 2+离子(x)的掺杂磁铁矿(Sn x Fe 3-2 / 3 x O 4)纳米颗粒(NPs)(12-50 nm)。的Sn 2+掺杂降低Fe的预期氧化3 Ò 4的NP到磁赤铁矿(γ-的Fe 2 ö 3),使得它们在几个磁应用中具有吸引力。在加热-冷却循环中进行的详细表征表明,有可能调整这些NP的异常观察到的磁化浸渍温度/幅度,不可逆性和居里点。我们认为这浸化学还原的γ -铁2NP表面的O 3。随着浸入温度的升高,我们发现掺杂Sn 2+会降低浸入幅度,直到x = 0.150时浸入幅度几乎消失。基于这些NP的核壳结构,结合了经修改的Bloch定律(M = M 0 [1- γT / T C)] β)和经过修改的居里-魏斯定律(M =  [1 /(T - T Cδ ])的产生是为了解释观察到的M-在不同的外加磁场和不同的Sn 2+浓度下的T行为。通过施加足够高的磁场,参数γδ≈1的值与修改的布洛赫和居里-魏斯定律相同。它们不随磁场变化,而仅取决于材料的结构和尺寸。高磁场的功率β为2.6,这与具有核心主导的磁化强度的纳米颗粒的尺寸一样。但是,对于较小的磁场,β值在3到10之间波动,这表明居里·魏斯(Curie-Weiss)项表示的壳结构产生了额外的磁作用。参数(α)的值非常小,对于高磁场,它变为负值。

更新日期:2020-10-02
down
wechat
bug