当前位置: X-MOL 学术Metall. Mater. Trans. A › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Creep Deformation and Dynamic Grain Growth in an Interstitial-Free Steel
Metallurgical and Materials Transactions A ( IF 2.8 ) Pub Date : 2020-10-01 , DOI: 10.1007/s11661-020-06014-6
Ryann E. Rupp , Philip J. Noell , Eric M. Taleff

Dynamic grain growth is demonstrated to be much faster than static grain growth in a body-centered-cubic, interstitial-free steel sheet material at 850\(\,^\circ {\rm{C}}\). Dynamic grain growth occurs during concurrent plastic deformation at elevated temperature, whereas static grain growth occurs during static annealing. Grain growth during steady-state plastic flow in tension at 850\(\,^\circ {\rm{C}}\) to a true strain of 0.2 at a true-strain rate of \(10^{-4}\) \({\rm{s}}^{-1}\) doubled grain size, while static annealing for the same time produced no increase in grain size. This is described as dynamic normal grain growth (DNGG) because no abnormally large grains were observed. The recrystallized microstructure of the steel demonstrated a log-normal distribution of grain sizes. DNGG produced bimodal grain size distributions that deviate from the theoretical expectation of a simple shift to larger sizes during normal growth. The bimodal distributions contained a remnant of small grains that were not consumed during grain growth. DNGG produced a crystallographic texture that is unique from both the recrystallized material and that produced by lattice rotation alone. DNGG strengthened the \(\{111\} \langle 110 \rangle \) and \(\{111\} \langle 112 \rangle \) components of the strong \(\gamma \)-fiber component in the original recrystallization texture. Lattice rotation from tensile deformation, by contrast, strengthened the \(\alpha \)-fiber components that intersect the original \(\gamma \)-fiber.



中文翻译:

无间隙钢中的蠕变变形和动态晶粒长大

在850 \(\,^ \ circ {\ rm {C}} \)处,在体心立方,无间隙的钢板材料中,动态晶粒的生长要比静态晶粒的生长快得多。动态晶粒长大发生在高温下的同时塑性变形过程中,而静态晶粒长大发生在静态退火过程中。在稳态塑性流中,在850 \(\,^ \ circ {\ rm {C}} \)的张力下,晶粒的生长以真实应变率\(10 ^ {-4} \ 的真实应变为0.2 。 )\({\ rm {s}} ^ {-1} \)晶粒尺寸增加了一倍,而同时进行静态退火不会增加晶粒尺寸。由于未观察到异常大的晶粒,因此被称为动态正常晶粒生长(DNGG)。钢的再结晶组织显示出晶粒大小的对数正态分布。DNGG产生了双峰粒度分布,这与正常增长过程中简单转变为较大尺寸的理论预期不同。双峰分布包含残留的小颗粒,这些小颗粒在谷物生长过程中没有被消耗。DNGG产生了一种晶体学织构,这种晶体织构对于重结晶材料和仅通过晶格旋转产生的晶体织构都是独特的。DNGG加强了\(\ {111 \} \ langle 110 \ rangle \)\(\ {111 \} \ langle 112 \ rangle \)原始重结晶纹理中的强\(\ gamma \)-纤维成分的成分。相比之下,拉伸变形引起的晶格旋转增强了与原始\(\ gamma \)-纤维相交的\(\ alpha \)-纤维成分。

更新日期:2020-10-02
down
wechat
bug