当前位置: X-MOL 学术J. Royal Soc. Interface › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Extension of hydrophilicity stability by reactive plasma treatment and wet storage on TiO 2 nanotube surfaces for biomedical implant applications
Journal of The Royal Society Interface ( IF 3.9 ) Pub Date : 2020-09-01 , DOI: 10.1098/rsif.2020.0650
Marcel F Kunrath 1, 2 , André L M Vargas 2 , Patrícia Sesterheim 3 , Eduardo R Teixeira 1 , Roberto Hubler 2
Affiliation  

Micro and nanoscale changes allow the optimization of physico-chemical properties of titanium implant surfaces. Recently UV and plasma treatments have allowed surface hydrophilicity to take increased prominence; however, this beneficial effect is short-lived. The aim of this study is to investigate methodologies post-anodizing treatment to generate and maintain high surface hydrophilicity along with high biocompatibility. Anodized surfaces were characterized regarding physical–chemical properties. Then, surface wettability with nanomorphology was evaluated at different times and with distinct post-treatments: as deposited, with a reactive plasma and UV-light post-treatment, stored in air or deionized (DI) water. Adhesion, alkaline phosphatase (ALP) activity and bone cell viability tests were executed after the incremental treatments. The anodizing process generated a surface with TiO2 nanotubes morphology and micro-roughness. Plasma-treated surfaces resulted in the most hydrophilic samples and this property was maintained for a longer period when those were stored in DI water (angle variation of 7° to 12° in 21 days). Furthermore, plasma post-treatment changed the titanium surface crystalline phase from amorphous to anatase. Anodized surfaces modified by reactive plasma and stored in DI water suggest better hydrophilicity stability, biocompatibility, ALP activity and achievement of crystalline phase alteration, indicating future potential use on biomedical implants.

中文翻译:

通过反应等离子体处理和湿储存在 TiO 2 纳米管表面上延长亲水稳定性,用于生物医学植入物应用

微米和纳米级的变化可以优化钛植入物表面的理化特性。最近紫外线和等离子体处理使表面亲水性变得更加突出。然而,这种有益效果是短暂的。本研究的目的是研究阳极氧化后处理的方法,以产生和保持高表面亲水性以及高生物相容性。阳极氧化表面的物理化学特性。然后,在不同时间和不同的后处理下评估具有纳米形态的表面润湿性:沉积时,用反应性等离子体和紫外线后处理,储存在空气或去离子 (DI) 水中。在增量治疗后进行粘附、碱性磷酸酶 (ALP) 活性和骨细胞活力测试。阳极氧化过程产生了具有 TiO2 纳米管形态和微观粗糙度的表面。等离子处理过的表面产生了最亲水的样品,当这些样品储存在去离子水中时(21 天的角度变化为 7° 到 12°),这种特性会保持更长的时间。此外,等离子体后处理将钛表面结晶相从无定形转变为锐钛矿。通过反应性等离子体改性并储存在去离子水中的阳极化表面表明具有更好的亲水稳定性、生物相容性、ALP 活性和结晶相改变的实现,表明未来在生物医学植入物上的潜在用途。等离子处理过的表面产生了最亲水的样品,当这些样品储存在去离子水中时(21 天的角度变化为 7° 到 12°),这种特性会保持更长的时间。此外,等离子体后处理将钛表面结晶相从无定形转变为锐钛矿。通过反应性等离子体改性并储存在去离子水中的阳极氧化表面表明具有更好的亲水稳定性、生物相容性、ALP 活性和结晶相改变的实现,表明未来在生物医学植入物上的潜在用途。等离子处理过的表面产生了最亲水的样品,当这些样品储存在去离子水中时(21 天的角度变化为 7° 到 12°),这种特性会保持更长的时间。此外,等离子体后处理将钛表面结晶相从无定形转变为锐钛矿。通过反应性等离子体改性并储存在去离子水中的阳极化表面表明具有更好的亲水稳定性、生物相容性、ALP 活性和结晶相改变的实现,表明未来在生物医学植入物上的潜在用途。
更新日期:2020-09-01
down
wechat
bug