当前位置: X-MOL 学术Nanophotonics › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Nanolaser arrays: toward application-driven dense integration
Nanophotonics ( IF 7.5 ) Pub Date : 2020-09-29 , DOI: 10.1515/nanoph-2020-0372
Suruj S. Deka 1 , Sizhu Jiang 1 , Si Hui Pan 1 , Yeshaiahu Fainman 1
Affiliation  

Abstract The past two decades have seen widespread efforts being directed toward the development of nanoscale lasers. A plethora of studies on single such emitters have helped demonstrate their advantageous characteristics such as ultrasmall footprints, low power consumption, and room-temperature operation. Leveraging knowledge about single nanolasers, the next phase of nanolaser technology will be geared toward scaling up design to form arrays for important applications. In this review, we discuss recent progress on the development of such array architectures of nanolasers. We focus on valuable attributes and phenomena realized due to unique array designs that may help enable real-world, practical applications. Arrays consisting of exactly two nanolasers are first introduced since they can serve as a building block toward comprehending the behavior of larger lattices. These larger-sized lattices can be distinguished depending on whether or not their constituent elements are coupled to one another in some form. While uncoupled arrays are suitable for applications such as imaging, biosensing, and even cryptography, coupling in arrays allows control over many aspects of the emission behavior such as beam directionality, mode switching, and orbital angular momentum. We conclude by discussing some important future directions involving nanolaser arrays.

中文翻译:

纳米激光阵列:走向应用驱动的密集集成

摘要 在过去的 20 年里,纳米级激光器的发展得到了广泛的努力。对单个此类发射器的大量研究有助于证明其优势特性,例如超小尺寸、低功耗和室温操作。利用有关单个纳米激光器的知识,纳米激光器技术的下一阶段将面向扩大设计以形成重要应用的阵列。在这篇综述中,我们讨论了这种纳米激光器阵列架构的最新进展。我们专注于由于独特的阵列设计而实现的有价值的属性和现象,这些设计可能有助于实现现实世界的实际应用。首先介绍由正好两个纳米激光器组成的阵列,因为它们可以作为理解更大晶格行为的基石。可以根据它们的组成元素是否以某种形式相互耦合来区分这些较大尺寸的晶格。虽然非耦合阵列适用于成像、生物传感甚至密码学等应用,但阵列耦合允许控制发射行为的许多方面,如光束方向性、模式切换和轨道角动量。我们最后讨论了一些涉及纳米激光器阵列的重要未来方向。虽然非耦合阵列适用于成像、生物传感甚至密码学等应用,但阵列耦合允许控制发射行为的许多方面,如光束方向性、模式切换和轨道角动量。我们最后讨论了一些涉及纳米激光器阵列的重要未来方向。虽然非耦合阵列适用于成像、生物传感甚至密码学等应用,但阵列耦合允许控制发射行为的许多方面,如光束方向性、模式切换和轨道角动量。我们最后讨论了一些涉及纳米激光器阵列的重要未来方向。
更新日期:2020-09-29
down
wechat
bug