当前位置: X-MOL 学术Adv. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Prototypic Lightweight Alloy Design for Stellar‐Radiation Environments
Advanced Science ( IF 15.1 ) Pub Date : 2020-09-30 , DOI: 10.1002/advs.202002397
Matheus A. Tunes 1 , Lukas Stemper 2 , Graeme Greaves 3 , Peter J. Uggowitzer 1, 4 , Stefan Pogatscher 1
Affiliation  

The existing literature data shows that conventional aluminium alloys may not be suitable for use in stellar‐radiation environments as their hardening phases are prone to dissolve upon exposure to energetic irradiation, resulting in alloy softening which may reduce the lifetime of such materials impairing future human‐based space missions. The innovative methodology of crossover alloying is herein used to synthesize an aluminium alloy with a radiation resistant hardening phase. This alloy—a crossover of 5xxx and 7xxx series Al‐alloys—is subjected to extreme heavy ion irradiations in situ within a TEM up to a dose of 1 dpa and major experimental observations are made: the Mg32(Zn,Al)49 hardening precipitates (denoted as T‐phase) for this alloy system surprisingly survive the extreme irradiation conditions, no cavities are found to nucleate and displacement damage is observed to develop in the form of black‐spots. This discovery indicates that a high phase fraction of hardening precipitates is a crucial parameter for achieving superior radiation tolerance. Based on such observations, this current work sets new guidelines for the design of metallic alloys for space exploration.

中文翻译:

用于恒星辐射环境的原型轻质合金设计

现有文献数据表明,常规铝合金可能不适合在恒星辐射环境中使用,因为它们的硬化相在暴露于高能辐照下时很容易溶解,从而导致合金软化,这可能会缩短此类材料的使用寿命,从而损害未来的人类健康。基础太空任务。跨界合金化的创新方法在本文中用于合成具有抗辐射硬化相的铝合金。这种合金(5xxx和7xxx系列铝合金的交叉材料)在TEM中原位经受了重离子辐射,剂量达1 dpa,并进行了主要的实验观察:Mg 32(Zn,Al)49该合金系统的硬化沉淀物(表示为T相)出乎意料地在极端的辐照条件下仍然存在,没有发现空洞成核,并且观察到以黑点形式出现位移损伤。该发现表明,硬化沉淀的高相分数是获得优异的辐射耐受性的关键参数。基于这样的观察,这项当前的工作为太空探索用金属合金的设计设定了新的指南。
更新日期:2020-11-19
down
wechat
bug