当前位置: X-MOL 学术Rob. Auton. Syst. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Adaptive parallel reflex- and decoupled CPG-based control for complex bipedal locomotion
Robotics and Autonomous Systems ( IF 4.3 ) Pub Date : 2020-12-01 , DOI: 10.1016/j.robot.2020.103663
Chaicharn Akkawutvanich , Frederik Ibsgaard Knudsen , Anders Falk Riis , Jørgen Christian Larsen , Poramate Manoonpong

Abstract The achievement of adaptive, stable, and robust locomotion and dealing with asymmetrical conditions for bipedal robots remain a challenging problem. To address the problem, this paper introduces adaptive parallel reflex- and decoupled central pattern generator (CPG)-based control for a planar bipedal robot. The control has modular structure consisting of two parallel modules that work together. Firstly, as the main controller, the reflex-based control module inspired by an agonist-antagonist model, utilizes proprioceptive sensory feedback to adaptively generate various stable gaits. In parallel, as an auxiliary controller, the decoupled CPG-based control units individually governing the robot legs have the ability to learn the generated gaits in an online manner. Using the proposed framework, our study shows that this real-time control approach contributes to stable gait generation with robustness toward sensory feedback malfunction and adaptability to deal with environmental and morphological changes. Herein this study, we demonstrate the planar bipedal robot control functionality on a variable speed treadmill, dealing with asymmetric conditions such as weight imbalance and asymmetrical elastic resistance in the legs. However, the approach does not require robot kinematic and dynamic models as well as an environmental model and is therefore flexible. As such, it can be used as a basis for controlling other bipedal locomotion systems, like lower-limb exoskeletons.

中文翻译:

基于自适应并行反射和解耦 CPG 的复杂双足运动控制

摘要 实现自适应、稳定和鲁棒的运动以及处理双足机器人的不对称条件仍然是一个具有挑战性的问题。为了解决这个问题,本文为平面双足机器人引入了基于自适应并行反射和解耦中央模式生成器 (CPG) 的控制。控制器采用模块化结构,由两个并行工作的模块组成。首先,作为主控制器,受激动剂-拮抗剂模型启发的基于反射的控制模块利用本体感觉反馈自适应地生成各种稳定的步态。同时,作为辅助控制器,独立控制机器人腿的基于解耦 CPG 的控制单元能够以在线方式学习生成的步态。使用提议的框架,我们的研究表明,这种实时控制方法有助于产生稳定的步态,对感觉反馈故障具有鲁棒性,并具有应对环境和形态变化的适应性。在本研究中,我们展示了变速跑步机上的平面双足机器人控制功能,处理不对称条件,例如腿部的重量不平衡和不对称弹性阻力。然而,该方法不需要机器人运动学和动力学模型以及环境模型,因此是灵活的。因此,它可以用作控制其他双足运动系统(如下肢外骨骼)的基础。在本研究中,我们展示了变速跑步机上的平面双足机器人控制功能,处理不对称条件,例如腿部的重量不平衡和不对称弹性阻力。然而,该方法不需要机器人运动学和动力学模型以及环境模型,因此是灵活的。因此,它可以用作控制其他双足运动系统(如下肢外骨骼)的基础。在本研究中,我们展示了变速跑步机上的平面双足机器人控制功能,处理不对称条件,例如腿部的重量不平衡和不对称弹性阻力。然而,该方法不需要机器人运动学和动力学模型以及环境模型,因此是灵活的。因此,它可以用作控制其他双足运动系统(如下肢外骨骼)的基础。
更新日期:2020-12-01
down
wechat
bug