当前位置: X-MOL 学术Aerosp. Sci. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Aeroelastic stability analysis of aircraft wings with initial curvature
Aerospace Science and Technology ( IF 5.6 ) Pub Date : 2020-09-29 , DOI: 10.1016/j.ast.2020.106241
M.R. Amoozgar , S.A. Fazelzadeh , H. Haddad Khodaparast , M.I. Friswell , J.E. Cooper

In this study, the aeroelastic instability of a wing with an initial out-of-plane curvature is determined. The structural dynamics of the wing is modelled by using the geometrically exact beam equations, and the aerodynamic loads are determined using an incompressible unsteady aerodynamic model. The wing is considered to have initial out-of-plane curvature, and the effect of the curvature on the flutter velocity and flutter frequency of the wing is determined. Two curved wing cases are considered here. In the first case, the length of the wing is assumed to be constant and therefore, as the wing is curved, the projected area of the wing decreases. In the second case, the wing is assumed to have a constant projected area and therefore different curvature angles result from different wing lengths. When the wing is designed to have an initial out-of-plane curvature, the wing dynamics change, and therefore the aeroelastic stability of the curved wing is also affected. It is shown that as the initial curvature of the wing increases, initially the flutter velocity decreases but then increases, and finally a sudden jump occurs in the flutter velocity due to the change of the coupled modes contributing to flutter. Moreover, the flutter frequency also first decreases as the curvature of the wing increases, and then there is a sudden jump in the frequency, and from this point again the frequency decreases. Finally, results highlighting the importance of the initial curvature and the length of the curved segment on the stability velocity and frequency of the curved wing are presented.



中文翻译:

初始曲率飞机机翼的气弹性稳定性分析

在这项研究中,确定了具有初始平面外曲率的机翼的气动弹性不稳定性。机翼的结构动力学是通过使用几何精确的射束方程建模的,而空气动力学载荷是使用不可压缩的非稳态空气动力学模型确定的。机翼被认为具有初始的平面外曲率,并且确定了曲率对机翼的颤振速度和颤振频率的影响。这里考虑两个弯曲的机翼盒。在第一种情况下,机翼的长度假定为恒定,因此,当机翼弯曲时,机翼的投影面积会减小。在第二种情况下,假设机翼具有恒定的投影面积,因此,机翼长度不同会导致不同的曲率角。当机翼设计成具有初始平面外曲率时,机翼动力学会发生变化,因此弯曲机翼的气动弹性稳定性也会受到影响。结果表明,随着机翼初始曲率的增加,起初扑动速度减小,但随后增加,最后,由于耦合模式的变化,导致扑动速度突然跳变。此外,颤动频率也首先随着机翼曲率的增大而减小,然后频率突然跳变,并且从这一点起,频率再次减小。最后,结果突出了初始曲率和弯曲段长度对弯曲机翼稳定速度和频率的重要性。因此,弯曲机翼的气动弹性稳定性也会受到影响。结果表明,随着机翼初始曲率的增加,起初扑动速度减小,但随后增加,最后,由于耦合模式的变化,导致扑动速度突然跳变。此外,颤动频率也首先随着机翼曲率的增大而减小,然后频率突然跳变,并且从这一点起,频率再次减小。最后,结果突出了初始曲率和弯曲段长度对弯曲机翼稳定速度和频率的重要性。因此,弯曲机翼的气动弹性稳定性也会受到影响。结果表明,随着机翼初始曲率的增加,起初扑动速度减小,但随后增加,最后,由于耦合模式的变化,导致扑动速度突然跳变。此外,颤动频率也首先随着机翼曲率的增大而减小,然后频率突然跳变,并且从这一点起,频率再次减小。最后,结果突出了初始曲率和弯曲段长度对弯曲机翼稳定速度和频率的重要性。最初,颤振速度降低,然后增加,最后,由于促动颤振的耦合模式的变化,颤振速度突然跳变。此外,颤动频率也首先随着机翼曲率的增大而减小,然后频率突然跳变,并且从这一点起,频率再次减小。最后,结果突出了初始曲率和弯曲段长度对弯曲机翼稳定速度和频率的重要性。最初,颤振速度降低,然后增加,最后,由于促动颤振的耦合模式的变化,颤振速度突然跳变。此外,颤动频率也首先随着机翼曲率的增大而减小,然后频率突然跳变,并且从这一点起,频率再次减小。最后,结果突出了初始曲率和弯曲段长度对弯曲机翼稳定速度和频率的重要性。从这一点开始,频率再次降低。最后,结果突出了初始曲率和弯曲段长度对弯曲机翼稳定速度和频率的重要性。从这一点开始,频率再次降低。最后,结果突出了初始曲率和弯曲段长度对弯曲机翼稳定速度和频率的重要性。

更新日期:2020-10-06
down
wechat
bug