当前位置: X-MOL 学术Prog. Part. Nucl. Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Towards grounding nuclear physics in QCD
Progress in Particle and Nuclear Physics ( IF 9.6 ) Pub Date : 2020-09-01 , DOI: 10.1016/j.ppnp.2020.103822
Christian Drischler , Wick Haxton , Kenneth McElvain , Emanuele Mereghetti , Amy Nicholson , Pavlos Vranas , André Walker-Loud

Exascale computing could soon enable a predictive theory of nuclear structure and reactions rooted in the Standard Model, with quantifiable and systematically improvable uncertainties. Such a predictive theory will help exploit experiments that use nucleons and nuclei as laboratories for testing the Standard Model and its limitations. Examples include direct dark matter detection, neutrinoless double beta decay, and searches for permanent electric dipole moments of the neutron and atoms. It will also help connect QCD to the properties of cold neutron stars and hot supernova cores. We discuss how a quantitative bridge between QCD and the properties of nuclei and nuclear matter will require a synthesis of lattice QCD (especially as applied to two- and three-nucleon interactions), effective field theory, and ab initio methods for solving the nuclear many-body problem. While there are significant challenges that must be addressed in developing this triad of theoretical tools, the rapid advance of computing is accelerating progress. In particular, we focus this review on the anticipated advances from lattice QCD and how these advances will impact few-body effective theories of nuclear physics by providing critical input, such as constraints on unknown low-energy constants of the effective (field) theories. We also review particular challenges that must be overcome for the successful application of lattice QCD for low-energy nuclear physics. We describe progress in developing few-body effective (field) theories of nuclear physics, with an emphasis on HOBET, a non-relativistic effective theory of nuclear physics, which is less common in the literature. We use the examples of neutrinoless double beta decay and the nuclear-matter equation of state to illustrate how the coupling of lattice QCD to effective theory might impact our understanding of symmetries and exotic astrophysical environments.

中文翻译:

在 QCD 中建立核物理基础

百亿亿级计算很快就能实现基于标准模型的核结构和反应的预测理论,具有可量化和可系统改进的不确定性。这种预测理论将有助于利用使用核子和原子核作为实验室来测试标准模型及其局限性的实验。示例包括直接暗物质探测、无中微子双 β 衰变以及搜索中子和原子的永久电偶极矩。它还将有助于将 QCD 与冷中子星和热超新星核心的特性联系起来。我们讨论了 QCD 与原子核和核物质性质之间的定量桥梁如何需要合成晶格 QCD(特别是应用于两核和三核相互作用)、有效场理论、以及用于解决核多体问题的从头算方法。虽然在开发这三个理论工具时必须解决一些重大挑战,但计算的快速发展正在加速进步。特别是,我们将这篇综述重点放在晶格 QCD 的预期进展上,以及这些进展将如何通过提供关键输入来影响核物理的少体有效理论,例如对有效(场)理论的未知低能常数的约束。我们还回顾了晶格 QCD 在低能核物理中的成功应用所必须克服的特殊挑战。我们描述了发展核物理少体有效(场)理论的进展,重点是 HOBET,一种非相对论的核物理有效理论,这在文献中较少见。我们使用无中微子双 β 衰变和核物质状态方程的例子来说明晶格 QCD 与有效理论的耦合如何影响我们对对称性和奇异天体物理环境的理解。
更新日期:2020-09-01
down
wechat
bug