当前位置: X-MOL 学术Mater. Today Nano › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
High quantum efficiency and stability of biohybrid quantum dots nanojunctions in bacteriophage-constructed perovskite
Materials Today Nano ( IF 10.3 ) Pub Date : 2020-09-28 , DOI: 10.1016/j.mtnano.2020.100099
Jong-Min Lee , Jin Woo Choi , Il Jeon , Ye Zhu , Tao Yang , Hoje Chun , Jongmoon Shin , Juyun Park , Joohee Bang , Kyounga Lim , Won-Geun Kim , Yeji Kim , Hyuk Jeong , Eun Jung Choi , Vasanthan Devaraj , Jeong Seok Nam , Hyungju Ahn , Yong-Cheol Kang , Byungchan Han , Myungkwan Song , Jin-Woo Oh , Chuanbin Mao

Forming heterojunctions is a traditional approach for improving the performance of semiconducting nanomaterials. However, using a biological nanostructure to achieve such a goal has rarely been studied. Here we showcase a novel biohybrid junction comprising a functional nanobiomaterial (bacteriophage) and a semiconductor nanomaterial (perovskite quantum dots). We found that M13 bacteriophage, genetically modified to bear increased negative charges, could assist the growth of cubic cesium lead bromide (CsPbBr3) perovskite quantum dots with a size of 13.25 ± 2.69 nm. The M13 bacteriophage further functioned as a scaffold for the assembly of the formed CsPbBr3 quantum dots into a bacteriophage-perovskite biohybrid with a photoluminescence quantum yield of 40.1%, 2.99-fold higher than that of conventional CsPbBr3 quantum dots (13.4%). In addition, compared to the conventional perovskite quantum dots, the perovskite quantum dots in the bacteriophage-based biohybrids exhibited a decreased full width at half maximum (FWHM) of the photoluminescence, indicating that the biohybrids are a better color gamut for light-emitting device applications. Such high optical performance arose from the ordered arrangement of the quantum dots by the bacteriophage, which further affected the charge density due to the interaction between the bacteriophage and CsPbBr3 surface. The materials lifetime of the M13 bacteriophage-assisted perovskite quantum dots was also 1.76 times greater than that of the conventional counterparts without the assistance of bacteriophages due to the reduced valence energy level in the biohybrids. The experiment using bacteriophage with artificially increased surface charge density through genetic manipulation proved our assumption that the surface charge density of the bacteriophage contributes to the stabilization of perovskite quantum dots. The light-emitting diode (LED) with perovskite quantum dots assembled and functionalized by bacteriophage exhibited a 17-fold higher maximum luminance than that of conventional CsPbBr3 quantum dots. This work demonstrates a novel nanobiotechnological approach to the production and assembly of perovskite quantum dots for light-emitting applications.



中文翻译:

噬菌体构建钙钛矿中生物杂交量子点纳米结的高量子效率和稳定性

形成异质结是改善半导体纳米材料性能的传统方法。然而,很少研究使用生物纳米结构来实现这一目标。在这里,我们展示了一种新型的生物杂交连接,包括功能纳米生物材料(噬菌体)和半导体纳米材料(钙钛矿量子点)。我们发现,经过基因修饰的M13噬菌体带有增加的负电荷,可以协助生长尺寸为13.25±2.69 nm的立方铯溴化铅(CsPbBr 3)钙钛矿量子点。M13噬菌体还可以充当组装形成的CsPbBr 3的支架量子点成为噬菌体钙钛矿生物杂交体,其光致发光量子产率为40.1%,是常规CsPbBr 3量子点(13.4%)的2.99倍。另外,与常规钙钛矿量子点相比,基于噬菌体的生物杂化物中的钙钛矿量子点的光致发光半峰全宽(FWHM)降低,表明该生物杂化物是发光器件的更好色域。应用程序。如此高的光学性能源于噬菌体对量子点的有序排列,由于噬菌体与CsPbBr 3之间的相互作用,进一步影响了电荷密度。表面。M13噬菌体辅助的钙钛矿量子点的材料寿命也比没有噬菌体帮助的传统同类物长1.76倍,这是由于生物杂合体的价能水平降低。使用噬菌体通过基因操作人工增加表面电荷密度的实验证明了我们的假设,即噬菌体的表面电荷密度有助于钙钛矿量子点的稳定。具有通过噬菌体组装和功能化的钙钛矿量子点的发光二极管(LED)的最大亮度比常规CsPbBr 3高17倍量子点。这项工作证明了用于发光应用的钙钛矿量子点生产和组装的新型纳米生物技术方法。

更新日期:2020-11-06
down
wechat
bug