当前位置: X-MOL 学术Geothermics › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
An abrasive water jet assisted back reaming technique based on percussion drilling for reducing non-production time in geothermal energy development
Geothermics ( IF 3.9 ) Pub Date : 2021-01-01 , DOI: 10.1016/j.geothermics.2020.101967
Yanliang Li , Jianming Peng , Keke Li , Kun Bo , Maosen Wang , Pengyu Zhang

Abstract Abrasive water jet (AWJ) technology is one of the fastest growing methods of cutting materials in recent years. Because percussion drilling can cause numerous impact cracks around the borehole, and these impact cracks can reduce the mechanical properties of the rock around the borehole. This makes it possible to improve AWJ reaming efficiency. The present paper investigates the influence of key jet parameters on AWJ reaming performance according to the specific problems encountered in the Gonghe geothermal well (GH-01). Additionally, the required time for AWJ reaming is analyzed and discussed. The results indicate that there is an existence of optimum value of jet standoff distance (s/d0 = 3) for the AWJ reaming performance. Moreover, the high jet traverse speed will lead to deterioration of reaming performance. If the jet traverse speed is controlled under 50 mm/s, the slower the speed is, the better the reaming performance is. In the context of reaming a defined depth of rock, jet pressure has no significant effect on reaming performance. The requirement of reaming can be met by using jet pressure at 35 MPa. Although the effect of the inclined jet on penetration depth is better than that of the vertical jet, the vertical jet can produce a wider penetrate width. Compared with conventional reaming, the time spent on AWJ reaming is 55 %–67 % less than that of conventional reaming when the depth of reaming is 100 m. All the above merits have provided a theoretical foundation and experimental proof for the field application of the AWJ reaming technique.

中文翻译:

一种基于冲击钻的磨料水射流辅助反扩孔技术缩短地热能开发非生产时间

摘要 磨料水射流(AWJ)技术是近年来发展最快的材料切割方法之一。因为冲击钻会在钻孔周围造成无数的冲击裂缝,这些冲击裂缝会降低钻孔周围岩石的力学性能。这使得可以提高 AWJ 铰孔效率。本文根据共和地热井(GH-01)中遇到的具体问题,研究了关键射流参数对AWJ扩孔性能的影响。此外,还分析和讨论了 AWJ 铰孔所需的时间。结果表明,对于AWJ铰孔性能,存在最佳射流间隔距离值(s/d0 = 3)。此外,高射流横移速度会导致铰孔性能变差。如果射流移动速度控制在50mm/s以下,速度越慢,铰孔性能越好。在对指定深度的岩石进行扩孔时,射流压力对扩孔性能没有显着影响。使用35 MPa的射流压力可以满足铰孔的要求。虽然斜射流对穿透深度的影响优于垂直射流,但垂直射流可以产生更宽的穿透宽度。与常规铰孔相比,当铰孔深度为100 m时,AWJ铰孔所用的时间比常规铰孔少55%~67%。以上种种优点,为AWJ铰孔技术的现场应用提供了理论基础和实验证明。在对指定深度的岩石进行扩孔时,射流压力对扩孔性能没有显着影响。使用35 MPa的射流压力可以满足铰孔的要求。虽然斜射流对穿透深度的影响优于垂直射流,但垂直射流可以产生更宽的穿透宽度。与常规铰孔相比,当铰孔深度为100 m时,AWJ铰孔所用的时间比常规铰孔少55%~67%。以上种种优点,为AWJ铰孔技术的现场应用提供了理论基础和实验证明。在对指定深度的岩石进行扩孔时,射流压力对扩孔性能没有显着影响。使用35 MPa的射流压力可以满足铰孔的要求。虽然斜射流对穿透深度的影响优于垂直射流,但垂直射流可以产生更宽的穿透宽度。与常规铰孔相比,当铰孔深度为100 m时,AWJ铰孔所用的时间比常规铰孔少55%~67%。以上种种优点,为AWJ铰孔技术的现场应用提供了理论基础和实验证明。虽然斜射流对穿透深度的影响优于垂直射流,但垂直射流可以产生更宽的穿透宽度。与常规铰孔相比,当铰孔深度为100 m时,AWJ铰孔所用的时间比常规铰孔少55%~67%。以上种种优点,为AWJ铰孔技术的现场应用提供了理论基础和实验证明。虽然斜射流对穿透深度的影响优于垂直射流,但垂直射流可以产生更宽的穿透宽度。与常规铰孔相比,当铰孔深度为100 m时,AWJ铰孔所用的时间比常规铰孔少55%~67%。以上种种优点,为AWJ铰孔技术的现场应用提供了理论基础和实验证明。
更新日期:2021-01-01
down
wechat
bug