当前位置: X-MOL 学术Phys. Rev. Appl. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Quantum-Enhanced Fiber-Optic Gyroscopes Using Quadrature Squeezing and Continuous-Variable Entanglement
Physical Review Applied ( IF 4.6 ) Pub Date : 2020-09-25 , DOI: 10.1103/physrevapplied.14.034065
Michael R. Grace , Christos N. Gagatsos , Quntao Zhuang , Saikat Guha

We evaluate the fundamental performance of a fiber-optic gyroscope (FOG) design that is enhanced by the injection of a quantum-optical squeezed vacuum. In the presence of fiber loss, we compute the optimum attainable enhancement below the standard quantum limit in terms of the angular velocity estimator variance from a homodyne measurement. We find that currently realizable amounts of single-mode squeezing are sufficient to access the maximum quantitative improvement, but that this gain in maximum rotation sensitivity is limited to a marginal constant factor. We then propose an entanglement-enhanced FOG design that segments a fixed amount of available fiber into multiple fiber interferometers and feeds this sensor array with a multimode-entangled squeezed vacuum resource. Our design raises the fundamental improvement in sensitivity to an appreciable factor of e2.718.

中文翻译:

使用正交压缩和连续可变纠缠的量子增强型光纤陀螺仪

我们评估了光纤陀螺仪(FOG)设计的基本性能,该设计通过注入量子光学压缩真空而得到增强。在存在光纤损耗的情况下,我们根据零差测量的角速度估算器方差计算出低于标准量子极限的最佳可获得增强。我们发现,当前可实现的单模压缩量足以获得最大的定量改进,但是最大旋转灵敏度的这种提高仅限于边际常数。然后,我们提出了一种纠缠增强的FOG设计,该设计将固定数量的可用光纤分割成多个光纤干涉仪,并为该传感器阵列提供多模纠缠的压缩真空资源。Ë2.718
更新日期:2020-09-25
down
wechat
bug