当前位置: X-MOL 学术Mol. Catal. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The promotional effect of surface Ru decoration on the catalytic performance of Co-based nanocatalysts for guaiacol hydrodeoxygenation
Molecular Catalysis ( IF 4.6 ) Pub Date : 2020-09-25 , DOI: 10.1016/j.mcat.2020.111224
Qiangqiang Xu , Yisheng Shi , Lan Yang , Guoli Fan , Feng Li

In the present work, carbon-supported Ru-decorated Co-based nanocatalysts were fabricated via a layered double hydroxide/carbon composite precursor approach and applied to the efficient hydrodeoxygenation (HDO) of guaiacol to produce cyclohexanol. It was demonstrated that uniform and highly dispersed Co nanoparticles could be formed on the carbon matrix, and the decoration of a small amount of Ru on the surface of Co nanoparticles could introduce stronger hydrogenolysis active sites. Furthermore, the reduction temperature for catalyst precursors could tune the size of Co-containing nanoparticles and regulate the density of surface oxygen vacancies originating from CoOx species. Under the mild reaction conditions (200 ℃ and 1.0 MPa hydrogen pressure), as-fabricated Ru-Co/C catalyst obtained at the reduction temperature of 600 °C showed excellent catalytic activity in the HDO of guaiacol, with a high cyclohexanol yield of ∼94 %, which was attributable to surface exposure of highly dispersive Ru° sites and the formation of abundant defective oxygen vacancies. The present results provide a new approach for designing high-performance Co-based HDO nanocatalysts by both the surface decoration of small amounts of precious metals and the introduction of surface defective structures.



中文翻译:

钌表面修饰对愈创木酚加氢脱氧钴基纳米催化剂催化性能的促进作用

在目前的工作中,通过层状双氢氧化物/碳复合前体方法制备了碳负载的钌修饰的钴基纳米催化剂,并将其应用于愈创木酚的高效加氢脱氧(HDO)以生产环己醇。结果表明,可以在碳基体上形成均匀且高度分散的Co纳米颗粒,并且在Co纳米颗粒表面修饰少量的Ru可以引入更强的氢解活性中心。此外,催化剂前体的还原温度可以调节含Co纳米颗粒的尺寸,并调节源自CoO x的表面氧空位的密度种类。在温和的反应条件下(200℃和1.0 MPa的氢气压力),在还原温度为600°C时获得的Ru-Co / C催化剂在愈创木酚的HDO中表现出优异的催化活性,环己醇的收率高达〜 94%,这归因于高度分散的Ru°位点的表面暴露以及大量缺陷氧空位的形成。目前的结果为通过少量贵金属的表面装饰和表面缺陷结构的引入提供了一种设计高性能钴基HDO纳米催化剂的新方法。

更新日期:2020-09-25
down
wechat
bug