当前位置: X-MOL 学术3D Print. Addit. Manuf. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Computationally Designed 3D Printed Self-Expandable Polymer Stents with Biodegradation Capacity for Minimally Invasive Heart Valve Implantation: A Proof-of-Concept Study.
3D Printing and Additive Manufacturing ( IF 3.1 ) Pub Date : 2017-03-01 , DOI: 10.1089/3dp.2016.0052
María Sol Cabrera 1 , Bart Sanders 1, 2 , Olga J G M Goor 2, 3 , Anita Driessen-Mol 1 , Cees W J Oomens 1, 2 , Frank P T Baaijens 1, 2
Affiliation  

The evolution of minimally invasive implantation procedures and the in vivo remodeling potential of decellularized tissue-engineered heart valves require stents with growth capacity to make these techniques available for pediatric patients. By means of computational tools and 3D printing technology, this proof-of-concept study demonstrates the design and manufacture of a polymer stent with a mechanical performance comparable to that of conventional nitinol stents used for heart valve implantation in animal trials. A commercially available 3D printing polymer was selected, and crush and crimping tests were conducted to validate the results predicted by the computational model. Finally, the degradability of the polymer was assessed via accelerated hydrolysis.

中文翻译:

计算设计的具有生物降解能力的3D打印自膨胀聚合物支架,可用于微创性心脏瓣膜植入术:概念验证研究。

微创植入程序的发展以及脱细胞的组织工程化心脏瓣膜的体内重塑潜力要求支架具有生长能力,以使这些技术可用于儿科患者。通过计算工具和3D打印技术,这项概念验证研究证明了聚合物支架的设计和制造,其机械性能可与动物实验中用于心脏瓣膜植入的传统镍钛合金支架相媲美。选择了可商购的3D打印聚合物,并进行了压碎和压接测试,以验证计算模型预测的结果。最后,通过加速水解来评估聚合物的降解性。
更新日期:2017-03-01
down
wechat
bug