当前位置: X-MOL 学术Annu. Rev. Mar. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The Complexity of Spills: The Fate of the Deepwater Horizon Oil.
Annual Review of Marine Science ( IF 17.3 ) Pub Date : 2021-01-04 , DOI: 10.1146/annurev-marine-032320-095153
Uta Passow 1 , Edward B Overton 2
Affiliation  

The Deepwater Horizon oil spill was the largest, longest-lasting, and deepest oil accident to date in US waters. As oil and natural gas jetted from release points at 1,500-m depth in the northern Gulf of Mexico, entrainment of the surrounding ocean water into a buoyant plume, rich in soluble hydrocarbons and dispersed microdroplets of oil, created a deep (1,000-m) intrusion layer. Larger droplets of liquid oil rose to the surface, forming a slick of mostly insoluble, hydrocarbon-type compounds. A variety of physical, chemical, and biological mechanisms helped to transform, remove, and redisperse the oil and gas that was released. Biodegradation removed up to 60% of the oil in the intrusion layer but was less efficient in the surface slick, due to nutrient limitation. Photochemical processes altered up to 50% (by mass) of the floating oil. The surface oil expression changed daily due to wind and currents, whereas the intrusion layer flowed southwestward. A portion of the weathered surface oil stranded along shorelines. Oil from both surface and intrusion layers were deposited onto the seafloor via sinking marine oil snow. The biodegradation rates of stranded or sedimented oil were low, with resuspension and redistribution transiently increasing biodegradation. The subsequent research efforts increased our understanding of the fate of spilled oil immensely, with novel insights focusing on the importance of photooxidation, the microbial communities driving biodegradation, and the formation of marine oil snow that transports oil to the seafloor.

中文翻译:


泄漏的复杂性:深水地平线石油的命运。

深水地平线漏油事件是迄今为止美国水域中最大,持续时间最长,影响最深的石油事故。当石油和天然气从墨西哥湾北部1,500米深度的释放点喷出时,周围的海水夹带到充满了可溶碳氢化合物和分散的油微滴的浮羽中,形成了深层(1,000米)入侵层。较大的液体油滴上升到表面,形成了大部分不溶的烃类化合物。多种物理,化学和生物机制有助于转化,去除和重新分散释放的石油和天然气。生物降解去除了侵入层中高达60%的油,但由于营养限制,在表面光滑方面效率较低。光化学过程最多改变了浮油的50%(质量)。由于风和潮流的影响,地表油的表达每天都在变化,而侵入层则向西南流动。一部分风化的地表油沿海岸线搁浅。来自表面层和侵入层的油通过下沉的海洋油雪沉积到海底。滞留或沉积油的生物降解率很低,重新悬浮和重新分布会暂时增加生物降解。随后的研究工作极大地加深了我们对溢油命运的理解,其新颖见解集中于光氧化的重要性,驱动生物降解的微生物群落以及将油运到海底的海洋油雪的形成。一部分风化的地表油沿海岸线搁浅。来自表面层和侵入层的油通过下沉的海洋油雪沉积到海底。滞留或沉积油的生物降解率很低,重新悬浮和重新分布会暂时增加生物降解。随后的研究工作极大地加深了我们对溢油命运的理解,其新颖见解集中于光氧化的重要性,驱动生物降解的微生物群落以及将油运到海底的海洋油雪的形成。一部分风化的地表油沿海岸线搁浅。来自表面层和侵入层的油通过下沉的海洋油雪沉积到海底。滞留或沉积油的生物降解率很低,重新悬浮和重新分布会暂时增加生物降解。随后的研究工作极大地加深了我们对溢油命运的理解,其新颖见解集中于光氧化的重要性,驱动生物降解的微生物群落以及将油运到海底的海洋油雪的形成。

更新日期:2021-01-05
down
wechat
bug