当前位置: X-MOL 学术APL Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Electrochemical impedance spectroscopy of human cochleas for modeling cochlear implant electrical stimulus spread
APL Materials ( IF 6.1 ) Pub Date : 2020-09-01 , DOI: 10.1063/5.0012514
C Jiang , S R de Rijk 1 , G G Malliaras 2 , M L Bance
Affiliation  

Cochlear implants (CIs) have tremendously helped people with severe to profound hearing loss to gain access to sound and oral-verbal communication. However, the electrical stimulus in the cochlea spreads easily and widely, since the perilymph and endolymph (i.e., intracochlear fluids) are essentially electrolytes, leading to an inability to focus stimulation to discrete portions of the auditory nerve, which blurs the neural signal. Here, we characterize the complex transimpedances of human cadaveric cochleas to investigate how electrical stimulus spread is distributed from 10 Hz to 100 kHz. By using electrochemical impedance spectroscopy (EIS), both the resistive and capacitive elements of human cochleas are measured and modeled with an electrical circuit model, identifying spread-induced and spread-independent impedance components. Based on this electrical circuit model, we implement a Laplace transform to simulate the theoretical shapes of the spread signals. The model is validated by experimentally applying the simulated stimulus as a real stimulus to the cochlea and measuring the shapes of the spread signals, with relative errors of <0.6% from the model. Based on this model, we show the relationship between stimulus pulse duration and electrical stimulus spread. This EIS technique to characterize the transimpedances of human cochleas provides a new way to predict the spread signal under an arbitrary electrical stimulus, thus providing preliminary guidance to the design of CI stimuli for different CI users and coding strategies.

中文翻译:

用于模拟人工耳蜗电刺激扩散的人耳蜗电化学阻抗谱

人工耳蜗 (CI) 极大地帮助了重度至极重度听力损失的人获得声音和口语交流。然而,由于外淋巴和内淋巴(即耳蜗内液体)本质上是电解质,因此耳蜗中的电刺激容易且广泛地传播,导致无法将刺激集中在听神经的离散部分,从而使神经信号模糊。在这里,我们描述了人类尸体耳蜗的复杂跨阻抗,以研究电刺激传播如何从 10 Hz 到 100 kHz 分布。通过使用电化学阻抗谱 (EIS),人类耳蜗的电阻和电容元件都可以通过电路模型进行测量和建模,从而识别传播诱导和传播无关的阻抗分量。基于这个电路模型,我们实现了拉普拉斯变换来模拟扩展信号的理论形状。该模型通过实验将模拟刺激作为真实刺激应用于耳蜗并测量传播信号的形状来验证,模型的相对误差 <0.6%。基于这个模型,我们展示了刺激脉冲持续时间和电刺激传播之间的关系。这种表征人类耳蜗跨阻抗的 EIS 技术为预测任意电刺激下的传播信号提供了一种新方法,从而为不同 CI 用户的 CI 刺激设计和编码策略提供了初步指导。该模型通过实验将模拟刺激作为真实刺激应用于耳蜗并测量传播信号的形状来验证,模型的相对误差 <0.6%。基于这个模型,我们展示了刺激脉冲持续时间和电刺激传播之间的关系。这种表征人类耳蜗跨阻抗的 EIS 技术为预测任意电刺激下的传播信号提供了一种新方法,从而为不同 CI 用户的 CI 刺激设计和编码策略提供了初步指导。该模型通过实验将模拟刺激作为真实刺激应用于耳蜗并测量传播信号的形状来验证,模型的相对误差 <0.6%。基于这个模型,我们展示了刺激脉冲持续时间和电刺激传播之间的关系。这种表征人类耳蜗跨阻抗的 EIS 技术为预测任意电刺激下的传播信号提供了一种新方法,从而为不同 CI 用户的 CI 刺激设计和编码策略提供了初步指导。我们展示了刺激脉冲持续时间和电刺激传播之间的关系。这种表征人类耳蜗跨阻抗的 EIS 技术为预测任意电刺激下的传播信号提供了一种新方法,从而为不同 CI 用户的 CI 刺激设计和编码策略提供了初步指导。我们展示了刺激脉冲持续时间和电刺激传播之间的关系。这种表征人类耳蜗跨阻抗的 EIS 技术为预测任意电刺激下的传播信号提供了一种新方法,从而为不同 CI 用户的 CI 刺激设计和编码策略提供了初步指导。
更新日期:2020-09-01
down
wechat
bug