当前位置: X-MOL 学术Journal of Speech Language and Hearing Research › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Electrophysiological Evidence of Early Cortical Sensitivity to Human Conspecific Mimic Voice as a Distinct Category of Natural Sound
Journal of Speech Language and Hearing Research Pub Date : 2020-09-16 , DOI: 10.1044/2020_jslhr-20-00063
William J Talkington 1 , Jeremy Donai 2 , Alexandra S Kadner 1 , Molly L Layne 1 , Andrew Forino 1 , Sijin Wen 3 , Si Gao 3 , Margeaux M Gray 4 , Alexandria J Ashraf 4 , Gabriela N Valencia 1 , Brandon D Smith 4 , Stephanie K Khoo 4 , Stephen J Gray 1 , Norman Lass 2 , Julie A Brefczynski-Lewis 1 , Susannah Engdahl 1 , David Graham 5 , Chris A Frum 1 , James W Lewis 1
Affiliation  

Purpose From an anthropological perspective of hominin communication, the human auditory system likely evolved to enable special sensitivity to sounds produced by the vocal tracts of human conspecifics whether attended or passively heard. While numerous electrophysiological studies have used stereotypical human-produced verbal (speech voice and singing voice) and nonverbal vocalizations to identify human voice–sensitive responses, controversy remains as to when (and where) processing of acoustic signal attributes characteristic of “human voiceness” per se initiate in the brain. Method To explore this, we used animal vocalizations and human-mimicked versions of those calls (“mimic voice”) to examine late auditory evoked potential responses in humans. Results Here, we revealed an N1b component (96–120 ms poststimulus) during a nonattending listening condition showing significantly greater magnitude in response to mimics, beginning as early as primary auditory cortices, preceding the time window reported in previous studies that revealed species-specific vocalization processing initiating in the range of 147–219 ms. During a sound discrimination task, a P600 (500–700 ms poststimulus) component showed specificity for accurate discrimination of human mimic voice. Distinct acoustic signal attributes and features of the stimuli were used in a classifier model, which could distinguish most human from animal voice comparably to behavioral data—though none of these single features could adequately distinguish human voiceness. Conclusions These results provide novel ideas for algorithms used in neuromimetic hearing aids, as well as direct electrophysiological support for a neurocognitive model of natural sound processing that informs both neurodevelopmental and anthropological models regarding the establishment of auditory communication systems in humans. Supplemental Material https://doi.org/10.23641/asha.12903839

中文翻译:

早期皮质对人类同种模仿声音(自然声音的独特类别)敏感的电生理学证据

目的从古人类交流的人类学角度来看,人类听觉系统可能进化到对人类声道产生的声音具有特殊的敏感性,无论是参与还是被动听到。虽然许多电生理学研究已经使用典型的人类产生的言语(语音和歌声)和非言语发声来识别人类声音敏感的反应,但关于何时(何地)处理“人类声音”特征的声学信号属性仍然存在争议。 se 在大脑中启动。 方法为了探索这一点,我们使用动物发声和这些叫声的模仿人类版本(“模仿声音”)来检查人类晚期听觉诱发的潜在反应。 结果在这里,我们揭示了在无人参与的聆听条件下的 N1b 成分(刺激后 96-120 毫秒),对模仿的反应表现出明显更大的幅度,早在初级听觉皮层就开始了,早于先前研究中报告的揭示物种特异性发声的时间窗口处理启动时间范围为 147–219 ms。在声音辨别任务中,P600(刺激后 500-700 毫秒)组件显示出准确辨别人类模仿声音的特异性。分类器模型中使用了不同的声学信号属性和刺激特征,该模型可以将大多数人类声音与动物声音与行为数据区分开来,尽管这些单一特征都无法充分区分人类声音。 结论这些结果为神经模拟助听器中使用的算法提供了新颖的想法,并为自然声音处理的神经认知模型提供了直接的电生理学支持,该模型为有关人类听觉通信系统建立的神经发育和人类学模型提供了信息。 补充材料 https://doi.org/10.23641/asha.12903839
更新日期:2020-09-16
down
wechat
bug