当前位置: X-MOL 学术Energy Fuels › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
PdO/Pd0/TiO2 Nanocatalysts Engineered by Flame Spray Pyrolysis: Study of the Synergy of PdO/Pd0 on H2 Production by HCOOH Dehydrogenation and the Deactivation Mechanism
Energy & Fuels ( IF 5.3 ) Pub Date : 2020-09-24 , DOI: 10.1021/acs.energyfuels.0c02399
Yiannis Deligiannakis 1 , Vasiliki Tsikourkitoudi 1 , Panagiota Stathi 1 , Karsten Wegner 2 , Joan Papavasiliou 3 , Maria Louloudi 4
Affiliation  

Palladium-based catalysts are among the most efficient for H2 production via HCOOH (FA) dehydrogenation at near-ambient pressure and temperature. Herein, we show that [PdO/Pd0/TiO2] nanocatalysts bearing a tetragonal PdO nanophase can be optimized for enhanced FA dehydrogenation via engineering of the [PdO:Pd0] ratio on the TiO2 support. We have developed a sequential-deposition flame spray pyrolysis (SD-FSP) technique for deposition of Pd on TiO2 at a high [PdO:Pd0] ratio up to 75%. In addition, we have synthesized low-[PdO:Pd0]-ratio catalysts using an oxygen-lean FSP protocol. The SD-FSP-made [PdO/Pd0/TiO2] nanocatalysts with a high [PdO:Pd0] ratio >70% can achieve a high H2 gas production rate of 534 mmol/g of Pd/min that supersedes by >300% the efficiency of [Pd0/TiO2] nanocatalysts with low PdO content. The thermodynamic basis of the role of [PdO:Pd0] was investigated by an Arrhenius study, which reveals that the activation energy barrier Ea is decreasing significantly, i.e., up to 50%, upon an increase of the [PdO:Pd0] ratio. A reduction of surficial PdO toward Pd0, by in situ generated H2, exerts a strong inhibitory effect on the catalyst. Overall, the present data indicate that both [i] maximization of the [PdO:Pd0] ratio and [ii] minimization of PdO reduction during H2 production are key prerequisites for enhanced FA dehydrogenation by TiO2-supported/Pd catalysts.

中文翻译:

火焰喷雾热解法制备PdO / Pd 0 / TiO 2纳米催化剂:PCO / Pd 0对HCOOH脱氢制H 2的协同作用及失活机理的研究

钯基催化剂是在接近环境压力和温度下通过HCOOH(FA)脱氢生产H 2的最有效方法。在这里,我们表明,可以通过设计TiO 2载体上的[PdO:Pd 0 ]比来优化具有四方PdO纳米相的[PdO / Pd 0 / TiO 2 ]纳米催化剂,以增强FA脱氢。我们已经开发了一种顺序沉积火焰喷雾热解(SD-FSP)技术,用于以高达[ 75%的高[PdO:Pd 0 ]比率]在TiO 2上沉积Pd 。此外,我们已经使用贫氧FSP协议合成了低[[PdO:Pd 0 ]-比率的催化剂。SD-FSP制[PdO / Pd 0[PdO:Pd 0 ]比率> 70%的/ TiO 2 ]纳米催化剂可以实现534 mmol / g Pd / min的H 2气体高生产率,而它的效率要高于[Pd 0 / TiO 2 ]的300%2 ]低PdO含量的纳米催化剂。通过Arrhenius研究研究了[PdO:Pd 0 ]作用的热力学基础,该研究表明,随着[PdO:Pd 0的增加,活化能垒E a显着降低,即降低了50%。]比率。通过原位生成的H 2将表面PdO还原为Pd 0,对催化剂有很强的抑制作用。总的来说,本数据表明[i] [PdO:Pd 0 ]比的最大化和[ii] H 2生产过程中PdO还原的最小化都是TiO 2负载的/ Pd催化剂增强FA脱氢的关键前提。
更新日期:2020-11-19
down
wechat
bug