当前位置: X-MOL 学术Adv. Energy Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Challenges and Strategy on Parasitic Reaction for High‐Performance Nonaqueous Lithium–Oxygen Batteries
Advanced Energy Materials ( IF 27.8 ) Pub Date : 2020-09-22 , DOI: 10.1002/aenm.202001789
Peng Zhang 1 , Mingjie Ding 1 , Xiaoxuan Li 1 , Caixia Li 1 , Zhaoqiang Li 1 , Longwei Yin 1
Affiliation  

The soaring demands for large‐scale energy storage devices have triggered great interest in nonaqueous lithium–oxygen batteries (LOBs), the most promising next‐generation rechargeable batteries due to their extremely high energy density, low cost, and environmental friendliness. However, serious parasitic reactions give rise to continuous consumption of cell components and accumulation of indissoluble side products, resulting in high overpotential, low rate capability, and especially limited cycle life, which hinder the commercial application of LOBs. This review focuses on comprehensively understanding the possible parasitic reactions involved at the cathode, anode, and electrolyte engendered by reactive oxygen species, impurity gasses, and singlet oxygen, while other factors that destabilize batteries such as Li dendrites, high potential, and incompatibility of cell components are also discussed. Furthermore, the corresponding strategies to inhibit or eliminate parasitic reactions and enhance the cycle stability are elaborated from the perspectives of composition regulation, microstructural design, and alternative components. It should be emphasized that the introduction of dual redox mediators and singlet quencher is crucial to achieve efficient LOBs with high capacity and prolonged cycle life. Finally, perspectives on suppressing parasitic reaction are proposed with the purpose of providing inspiration in designing stable LOBs for practical applications.

中文翻译:

高性能非水锂氧电池寄生反应的挑战与对策

对大型储能设备的飞涨需求引起了对非水锂氧电池(LOB)的极大兴趣,非水锂氧电池由于其极高的能量密度,低成本和环境友好性而成为最有希望的下一代可再充电电池。然而,严重的寄生反应导致细胞成分的持续消耗和不溶性副产物的积累,从而导致过高的电势,低倍率的能力以及特别是有限的循环寿命,这阻碍了LOB的商业应用。这篇综述着重于全面了解活性氧,杂质气体和单线态氧在阴极,阳极和电解质上可能引起的寄生反应,而其他因素也会破坏电池的稳定性,例如锂枝晶,高电势,还讨论了细胞成分的不相容性。此外,从组成调节,微观结构设计和替代组件的角度,详细阐述了抑制或消除寄生反应并增强循环稳定性的相应策略。应该强调的是,引入双重氧化还原介体和单线态猝灭剂对于获得高效,容量大,循环寿命长的LOB至关重要。最后,提出了抑制寄生反应的观点,目的是为实际应用中设计稳定的LOB提供启发。从组成调节,微观结构设计和替代组件的角度,详细阐述了抑制或消除寄生反应并增强循环稳定性的相应策略。应该强调的是,引入双重氧化还原介体和单线态猝灭剂对于获得高效,容量大,循环寿命长的LOB至关重要。最后,提出了抑制寄生反应的观点,目的是为实际应用中设计稳定的LOB提供启发。从组成调节,微观结构设计和替代组件的角度,详细阐述了抑制或消除寄生反应并增强循环稳定性的相应策略。应该强调的是,引入双重氧化还原介体和单线态猝灭剂对于获得高效,容量大,循环寿命长的LOB至关重要。最后,提出了抑制寄生反应的观点,目的是为实际应用中设计稳定的LOB提供启发。
更新日期:2020-10-28
down
wechat
bug