当前位置: X-MOL 学术Soil Dyn. Earthq. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Recovery and reconstruction of schools after M 7.3 Ezgeleh-Sarpole-Zahab earthquake; part II: Recovery process and resiliency calculation
Soil Dynamics and Earthquake Engineering ( IF 4 ) Pub Date : 2020-12-01 , DOI: 10.1016/j.soildyn.2020.106327
Mahdi Eghbali , Delbaz Samadian , Mohsen Ghafory-Ashtiany , Morteza Raissi Dehkordi

Abstract After presenting a taxonomy of schools in part one and their modes of behavior during the Ezgeleh earthquake in November 2017, this paper quantifies the seismic resilience index of Iranian school buildings, including post-recovery and retrofitting processes. Six schools having different structural properties as being representative of the 3029 Iranian school buildings in the affected area were chosen for resilience evaluation. Field observations were made at the selected schools and the collected data on the earthquake recovery process were used to calculate the seismic resilience index for the different types of school buildings. Functionality curves were developed to illustrate the process of recovery three years after the event. The Ezgeleh earthquake caused slight to moderate damage to masonry schools that otherwise had acceptable levels of resilience. School buildings that had been retrofitted before the Ezgeleh earthquake remained intact and showed a high level of resilience and robustness. Those which had been slated for retrofitting but had not been reinforced suffered serious structural and nonstructural damage. The school buildings which recorded the lowest resilience values required reconstruction after the earthquake. Comparison of the resilience parameters of school buildings, including robustness, rapidity, recovery time, resilience index, and delay time indicated that buildings that were retrofitted earlier recorded the highest resilience factors.

中文翻译:

M 7.3 Ezgeleh-Sarpole-Zahab 地震后学校的恢复和重建;第二部分:恢复过程和弹性计算

摘要 在第一部分介绍了 2017 年 11 月 Ezgeleh 地震期间学校的分类及其行为模式后,本文量化了伊朗学校建筑的抗震弹性指数,包括恢复和改造过程。选择具有不同结构特性的六所学校作为受影响地区的 3029 所伊朗学校建筑的代表进行复原力评估。在选定的学校进行了实地观察,并利用收集到的地震恢复过程数据来计算不同类型学校建筑的抗震弹性指数。开发功能曲线以说明事件三年后的恢复过程。Ezgeleh 地震对砖石学校造成了轻微到中度的破坏,否则这些学校的恢复能力是可以接受的。在 Ezgeleh 地震之前经过改造的学校建筑仍然完好无损,并显示出高度的弹性和坚固性。那些已计划进行改造但尚未加固的建筑物遭受了严重的结构和非结构损坏。灾后恢复力值最低的校舍需要重建。比较学校建筑的弹性参数,包括坚固性、快速性、恢复时间、弹性指数和延迟时间,表明较早改造的建筑物记录了最高的弹性系数。在 Ezgeleh 地震之前经过改造的学校建筑仍然完好无损,并显示出高度的弹性和坚固性。那些已计划进行改造但尚未加固的建筑物遭受了严重的结构和非结构损坏。灾后恢复力值最低的校舍需要重建。比较学校建筑的弹性参数,包括坚固性、快速性、恢复时间、弹性指数和延迟时间,表明较早改造的建筑物记录了最高的弹性系数。在 Ezgeleh 地震之前经过改造的学校建筑仍然完好无损,并显示出高度的弹性和坚固性。那些已计划进行改造但尚未加固的建筑物遭受了严重的结构和非结构损坏。灾后恢复力值最低的校舍需要重建。比较学校建筑的弹性参数,包括坚固性、快速性、恢复时间、弹性指数和延迟时间,表明较早改造的建筑物记录了最高的弹性系数。灾后恢复力值最低的校舍需要重建。比较学校建筑的弹性参数,包括坚固性、快速性、恢复时间、弹性指数和延迟时间,表明较早改造的建筑物记录了最高的弹性系数。灾后恢复力值最低的校舍需要重建。比较学校建筑的弹性参数,包括坚固性、快速性、恢复时间、弹性指数和延迟时间,表明较早改造的建筑物记录了最高的弹性系数。
更新日期:2020-12-01
down
wechat
bug