当前位置: X-MOL 学术Mech. Syst. Signal Process. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Parametric design optimization of e-compressor NVH using blocked forces and substructuring
Mechanical Systems and Signal Processing ( IF 8.4 ) Pub Date : 2021-03-01 , DOI: 10.1016/j.ymssp.2020.107217
M. Haeussler , D.C. Kobus , D.J. Rixen

Abstract The combination of frequency based substructuring (FBS) and blocked force Transfer Path Analysis (TPA) allows to perform parametric NVH design optimizations. Blocked forces are not dependent on one specific receiver structure, in contrast to interface forces of classical TPA. Blocked forces can therefore be used as a source description in design optimization. For optimizing the assembly, different substructures are virtually coupled to each other, where each substructure is described by the most appropriate modeling approach. Frequency based substructuring (FBS) allows coupling analytical, numerical or experimental models to each other. The transfer functions of the final assembly can thus be simulated by FBS. Numerical models are used for substructures which can be simulated with high accuracy. These are parametrized for optimization. Experimental substructure models are used for substructures that are hard to simulate accurately. The application example is an electric climate compressor. Its excitation is characterized by means of blocked forces. The assembly consists of: a) a FEM model of the receiver, b) experimental models of different rubber isolators, c) a parametrized FEM model for the compressor support, and d) an analytical rigid body model for the compressor itself. The rubber isolator choice and the FEM model of the support, are iteratively optimized for minimal structure borne noise. Virtually coupling the substructures, and applying the compressors blocked forces to the assembly, makes it possible to simulate the resulting loudness for different design parameters. We discuss the formulation of an objective function and the applicability of different optimization algorithms on a minimal example first. Then we apply a genetic optimization algorithm to the objective function for the compressor design. The simulated predictions for the optimal parameters are validated with measurements on the physically built up design, including auralization of the results.

中文翻译:

使用阻塞力和子结构的电动压缩机 NVH 的参数化设计优化

摘要 基于频率的子结构 (FBS) 和阻塞力传递路径分析 (TPA) 的组合允许执行参数化 NVH 设计优化。与经典 TPA 的界面力相反,受阻力不依赖于一种特定的接收器结构。因此,受阻力可用作设计优化中的源描述。为了优化装配,不同的子结构彼此虚拟耦合,其中每个子结构都由最合适的建模方法描述。基于频率的子结构 (FBS) 允许将分析、数值或实验模型相互耦合。因此,最终装配的传递函数可以通过 FBS 进行模拟。数值模型用于可以高精度模拟的子结构。这些被参数化以进行优化。实验子结构模型用于难以准确模拟的子结构。应用示例是电动气候压缩机。其激发的特点是受阻力。该组件包括:a) 接收器的 FEM 模型,b) 不同橡胶隔振器的实验模型,c) 压缩机支架的参数化 FEM 模型,以及 d) 压缩机本身的解析刚体模型。橡胶隔振器的选择和支架的 FEM 模型经过迭代优化,以实现最小的结构噪声。虚拟耦合子结构,并将压缩机阻塞力施加到组件上,可以模拟不同设计参数的最终响度。我们首先讨论目标函数的制定和不同优化算法在最小示例上的适用性。然后我们将遗传优化算法应用于压缩机设计的目标函数。最佳参数的模拟预测通过对物理构建设计的测量进行验证,包括结果的可听化。
更新日期:2021-03-01
down
wechat
bug