当前位置: X-MOL 学术Russ. Microelectron. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Electrical Performance Improvement of Lead-Acid Battery under the Impact of Micro Carbon Additives
Russian Microelectronics Pub Date : 2020-03-10 , DOI: 10.1134/s1063739719080109
A. P. Kuzmenko , E. A. Grechushnikov , V. A. Kharseev , A. N. Salnikov

Abstract

The features and changes in the microstructure of the electrode material of the negative electrode of the lead–acid starter accumulator battery appearing on the addition of two different specimens of carbon carbon black and hybrid carbon, are investigated. The X-ray phase analysis and the scanning electron microscopy analysis are conducted. It is established that using carbon black or hybrid carbon as an additive to the material of the negative electrode influences its structure causing changes in the processes of its impregnation and formation. Based on the structural analysis, a qualitative description, according to which hybrid carbon increases the dispersity of the negative active mass and impedes the diffusion of sulfate-ions, is proposed. The standard tests were conducted by intensive cycling in the partial state of charge lead–acid starter batteries in the charge–discharge mode. The batteries were manufactured using negative plates with additives of technical or hybrid carbon. The influence of each type of carbon additive on the electrical characteristics of the starter batteries is determined. It is shown that the additive of hybrid carbon increases the service life of starter batteries under operation in the partial state of the charge. This additive increases the charge acceptance on average by 9% and the deep discharge stability of the battery. The capacity loss after deep discharge is less than 4.4% if hybrid carbon is used as an additive and 7.2% in the case of carbon black.


中文翻译:

微碳添加剂对铅酸蓄电池电性能的影响

摘要

研究了添加两种不同的碳黑和混合碳样品后,铅酸起动蓄电池负极材料的微观结构特征和变化。进行X射线相分析和扫描电子显微镜分析。已确定使用炭黑或杂化碳作为负极材料的添加剂会影响其结构,从而导致其浸渍和形成过程发生变化。基于结构分析,提出了定性描述,根据该定性描述,杂化碳增加了负极活性物质的分散性并阻止了硫酸根离子的扩散。通过在充电-放电模式下的部分充电铅酸起动器电池中进行密集循环来进行标准测试。电池是使用带有技术或混合碳添加剂的负极板制造的。确定每种类型的碳添加剂对起动机电池电气特性的影响。结果表明,在部分充电状态下,混合碳添加剂可提高起动机电池的使用寿命。该添加剂平均使电荷接受度提高9%,并提高了电池的深度放电稳定性。如果使用杂化碳作为添加剂,则深放电后的容量损失小于4.4%,而对于炭黑,则为7.2%。电池是使用带有技术或混合碳添加剂的负极板制造的。确定每种类型的碳添加剂对起动机电池电气特性的影响。结果表明,在部分充电状态下,混合碳添加剂可提高起动机电池的使用寿命。该添加剂平均使电荷接受度提高9%,并提高了电池的深度放电稳定性。如果使用杂化碳作为添加剂,则深放电后的容量损失小于4.4%,而对于炭黑,则为7.2%。电池是使用带有技术或混合碳添加剂的负极板制造的。确定每种类型的碳添加剂对起动机电池电气特性的影响。结果表明,在部分充电状态下,混合碳添加剂可提高起动机电池的使用寿命。该添加剂平均使电荷接受度提高9%,并提高了电池的深度放电稳定性。如果使用杂化碳作为添加剂,则深放电后的容量损失小于4.4%,而对于炭黑,则为7.2%。结果表明,在部分充电状态下,混合碳添加剂可提高起动机电池的使用寿命。该添加剂平均使电荷接受度提高9%,并提高了电池的深度放电稳定性。如果使用杂化碳作为添加剂,则深放电后的容量损失小于4.4%;对于炭黑,则为7.2%。结果表明,在部分充电状态下,混合碳添加剂可提高起动机电池的使用寿命。该添加剂平均使电荷接受度提高9%,并提高了电池的深度放电稳定性。如果使用杂化碳作为添加剂,则深放电后的容量损失小于4.4%,而对于炭黑,则为7.2%。
更新日期:2020-03-10
down
wechat
bug