当前位置: X-MOL 学术IEEE Trans. Transp. Electrif. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Design and Experiment of Control Architecture and Adaptive Dual-loop Controller for Brake-by-wire System with An Electric Booster
IEEE Transactions on Transportation Electrification ( IF 7 ) Pub Date : 2020-09-01 , DOI: 10.1109/tte.2020.3010279
Xiangyu Wang , Xiuheng Wu , Shuo Cheng , Jialei Shi , Xianyao Ping , Wei Yue

Brake-by-wire (BBW) is a critical technology in modern automotive and lays a solid foundation for intelligent vehicles. A control strategy to take full advantage of this system both in the active brake and the conventional boosting brake is essential for the BBW system, which is a challenging issue because of its complex structure and high requirement for rapid dynamic response and control accuracy. To get satisfying performance and control effect, this article designs a new type of electric booster installing on the electrohydraulic brake (EHB) system that can realize active brake control and brake boosting simultaneously, and then, a synthetic control architecture special for this system is put forward. First, the system principle and detailed modeling are given. Then, an adaptive dual-loop brake pressure control approach is proposed where a modified PID controller is used as the outer control loop to track the desired pressure and an inner loop named adaptive current control is employed to guarantee the brushless direct electric motor (BLDC) performance of tracking current considering the parametric variation and system uncertainties. Besides, the stability of the inner loop control is proven. Meanwhile, a user-defined brake-boosting framework is designed to realize the electric boosting brake. Simulation and experimental validation are implemented to demonstrate the feasibility of the system and the effectiveness of the control strategy design eventually, manifesting that the proposed BBW system and its control strategy can obtain satisfying performance.

中文翻译:

带电动助力器的线控制动系统控制架构及自适应双回路控制器的设计与试验

线控制动 (BBW) 是现代汽车中的一项关键技术,为智能汽车奠定了坚实的基础。在主动制动和传统助力制动中充分利用该系统的控制策略对于BBW系统来说是必不可少的,这是一个具有挑战性的问题,因为其结构复杂,对快速动态响应和控制精度的要求很高。为获得令人满意的性能和控制效果,本文设计了一种新型的电动助力器安装在电液制动(EHB)系统上,可以同时实现主动制动控制和制动助力,然后提出了一种专门针对该系统的综合控制架构。向前。首先给出了系统原理和详细建模。然后,提出了一种自适应双回路制动压力控制方法,其中使用改进的 PID 控制器作为外部控制回路来跟踪所需压力,并采用名为自适应电流控制的内部回路来保证无刷直流电机 (BLDC) 的性能。考虑参数变化和系统不确定性的跟踪电流。此外,还证明了内环控制的稳定性。同时,设计了一个用户自定义的制动助力框架来实现电动助力制动。通过仿真和实验验证,最终证明了系统的可行性和控制策略设计的有效性,表明所提出的BBW系统及其控制策略可以获得令人满意的性能。
更新日期:2020-09-01
down
wechat
bug