当前位置: X-MOL 学术Phys. Rev. X › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
High-throughput study of lattice thermal conductivity in binary rocksalt and zincblende compounds including higher-order anharmonicity
Physical Review X ( IF 12.5 ) Pub Date : 
Yi Xia, Vinay I. Hegde, Koushik Pal, Xia Hua, Dale Gaines, Shane Patel, Jiangang He, Muratahan Aykol, Chris Wolverton

Thermal transport phenomena are ubiquitous and play a critical role in the performance of various microelectronic and energy-conversion devices. Binary rocksalt and zincblende compounds, despite their rather simple crystal structures, exhibit an extraordinarily range of lattice thermal conductivity ($\kappa_{\rm L}$) spanning over three orders of magnitude. A comprehensive understanding of the underlying heat transfer mechanism through the development of microscopic theories is therefore of fundamental importance, yet remains elusive, due to the challenges arising from explicitly treating higher-order anharmonicity. Recent theoretical and experimental advances have revealed the essential role of quartic anharmonicity in suppressing heat transfer in zincblende BAs with ultrahigh $\kappa_{\rm L}$. However, critical questions concerning the general effects of higher-order anharmonicity in the broad classes and chemistries of binary solids are still unanswered. Using our recently developed high-throughput phonon framework based on first-principles density-functional theory calculations, we systematically investigate the lattice dynamics and thermal transport properties of thirty-seven binary compounds with rocksalt and zincblende structures at room temperature, with a particular focus on unraveling the impacts of quartic anharmonicity on $\kappa_{\rm L}$. Our advanced theoretical model for computing $\kappa_{\rm L}$ embraces current state-of-the-art methods, featuring a complete treatment of quartic anharmonicity for both phonon frequencies and lifetimes at finite temperatures, as well as contributions from off-diagonal terms in the heat-flux operator. We find the impacts of quartic anharmonicity on $\kappa_{\rm L}$ to be strikingly different in rocksalt and zincblende compounds, owing to the countervailing effects on finite-temperature-induced shifts in phonon frequencies and scattering rates. By correlating $\kappa_{\rm L}$ with the phonon scattering phase space, we outline a qualitative but efficient route to assess the importance of four-phonon scattering from harmonic phonon calculations. Among notable examples, we identify in zincblende HgTe an unprecedented sixfold reduction in $\kappa_{\rm L}$ due to four-phonon scattering, which dominates over the three-phonon scattering in the acoustic region at room temperature. We also demonstrate a possible breakdown of the phonon gas model in rocksalt AgCl, wherein the phonon states are significantly broadened due to strong intrinsic anharmonicity, inducing off-diagonal contributions to $\kappa_{\rm L}$ comparable to the diagonal ones. These deep physical insights gained in this work can be used to guide the rational design of thermal management materials.

中文翻译:

高通量研究二元岩盐和闪锌矿化合物的晶格热导率,包括高阶非谐性

热传输现象无处不在,并且在各种微电子和能量转换设备的性能中起着至关重要的作用。尽管二元岩盐和闪锌矿化合物的晶体结构相当简单,但它们的晶格热导率范围非常大($ \ kappa _ {\ rm L} $),跨越三个数量级。因此,由于显式处理高阶非谐性带来的挑战,通过微观理论的发展对基本的传热机理进行全面的理解具有根本的重要性,但仍然难以捉摸。最近的理论和实验进展表明,四元非谐性在抑制超高$ \ kappa _ {\ rm L} $的闪锌矿BA中的传热中起着至关重要的作用。。但是,关于高阶非谐性在二元固体的广泛分类和化学中的一般作用的关键问题仍未得到解答。使用我们最近基于第一原理密度泛函理论计算开发的高通量声子框架,我们系统地研究了37种具有岩盐和闪锌矿结构的二元化合物在室温下的晶格动力学和热输运性质,特别关注阐明四次非谐性对$ \ kappa _ {\ rm L} $的影响。我们用于计算$ \ kappa _ {\ rm L} $的高级理论模型涵盖了当前的最新方法,包括对有限温度下的声子频率和寿命的四次非谐性进行全面处理,以及热通量算符中非对角项的贡献。我们发现,由于对有限温度引起的声子频率和散射率变化的抵消作用,在岩石盐和闪锌矿化合物中,四次非谐对$ kappa _ {\ rm L} $的影响明显不同。通过将$ \ kappa _ {\ rm L} $与声子散射相空间相关联,我们概述了一种定性但有效的途径,可从谐波声子计算中评估四声子散射的重要性。在著名的例子中,我们发现闪锌矿中的HgTe前所未有地减少了六倍。$ \ kappa _ {\ rm L} $归因于四声子散射,在室温下,声子区域中的三声子散射占主导地位。我们还证明了岩石盐AgCl中声子气体模型的可能破坏,其中声子态由于强的固有非谐性而显着拓宽,从而导致对角线对$ \ kappa _ {\ rm L} $的贡献与对角线相似。在这项工作中获得的这些深刻的物理见解可用于指导热管理材料的合理设计。
更新日期:2020-09-22
down
wechat
bug