当前位置: X-MOL 学术Microw. Opt. Technol. Lett. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Performance analysis of optomechanical‐based microcantilever sensor with various geometrical shapes
Microwave and Optical Technology Letters ( IF 1.5 ) Pub Date : 2020-09-22 , DOI: 10.1002/mop.32652
Anup M. Upadhyaya 1, 2 , Maneesh C. Srivastava 1 , Preeta Sharan 3
Affiliation  

This paper presents a performance analysis of different microcantilever shapes integrated with the optical MEMS system in different fluid mediums. Microcantilevers such as rectangular, trapezoidal, and triangle profile are coupled with optical sensing layers. Here, the concept of integration of optical sensing layer with different shapes of microcantilever is novel. The cantilever is designed and developed in CAD tools. Numerical analysis of different shapes of microcantilever was carried out with the help of Ansys Workbench. Optimal design of the regular microcantilever is considered during the analysis. The pressure is applied to the free end of the cantilever in the range of 100 to 250 kPa. The complete photonic sensing layer is analyzed with the help of an finite difference time domain (FDTD) tool called MIT Electromagnetic Equation Propagation (MEEP). The transmission spectrum is obtained for each microcantilever model. The pressure‐induced refractive index is calculated for the equivalent maximum stress generated. The result shows that a remarkable Q factor was obtained for rectangular, trapezoidal, and triangular profile microcantilevers with an optical system. Triangular and rectangular profiles have shown remarkable contribution over quality factor for air mediums such as 10 120, 1300, respectively. High pressure sensitivity of 1.92 nm/kPa was obtained for rectangular microcantilever in air. Least sensitivity of 0.16 nm/kPa was obtained for triangle microcantilever in the water medium. The proposed work successfully distinguishes various shapes of microcantilever in terms of sensitivity and Q factor. It is having tremendous application in sensing biofluids and in device miniaturization.

中文翻译:

具有各种几何形状的基于光机械的微悬臂梁传感器的性能分析

本文介绍了在不同的流体介质中与光学MEMS系统集成的不同微悬臂梁形状的性能分析。诸如矩形,梯形和三角形轮廓的微悬臂与光学传感层耦合。在此,将具有不同形状的微悬臂梁的光学传感层集成的概念是新颖的。悬臂是在CAD工具中设计和开发的。借助Ansys Workbench对不同形状的微悬臂梁进行了数值分析。分析过程中考虑了常规微悬臂梁的优化设计。施加到悬臂自由端的压力为100至250 kPa。借助称为MIT电磁方程传播(MEEP)的时差有限时(FDTD)工具分析完整的光子传感层。获得每个微悬臂梁模型的透射光谱。压力诱导的折射率是针对产生的等效最大应力计算的。结果表明,具有光学系统的矩形,梯形和三角形轮廓微悬臂梁获得了显着的Q因子。三角形和矩形轮廓分别对空气介质(例如10 120、1300)的品质因数表现出显着贡献。对于矩形微悬臂梁,在空气中可获得1.92 nm / kPa的高压灵敏度。对于水介质中的三角形微悬臂梁,最小灵敏度为0.16 nm / kPa。拟议的工作成功地区分了灵敏度和Q因子的微悬臂梁的各种形状。它在传感生物流体和设备小型化方面具有巨大的应用。
更新日期:2020-09-22
down
wechat
bug