当前位置: X-MOL 学术Vib. Spectrosc. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Detection of the quality of juicy peach during storage by visible/near infrared spectroscopy
Vibrational Spectroscopy ( IF 2.5 ) Pub Date : 2020-11-01 , DOI: 10.1016/j.vibspec.2020.103152
Yande Liu , Yu Zhang , Xiaogang Jiang , Haochen Liu

Abstract In order to study the changes of internal quality of peach (juicy peach) during storage and further discuss the feasibility of predicting the quality of peach through visible /near infrared spectroscopy (VIS/NIR). Firstly, the spectra of peach in two storage conditions were collected with the fruit quality dynamic detection equipment, and its soluble solid content (SSC), firmness and weight were measured. Then, partial least squares discrimination analysis (PLS-DA) was used to develop the classification model of peach, and the accuracy was higher than 90 %. Finally, partial least squares (PLS) regression combined with preprocessing methods was used to develop the models of SSC and firmness. Uninformative variable elimination (UVE) and competitive adaptive reweighted sampling (CARS) were also used to optimize the model to obtain the optimal prediction models. The results showed that CARS-PLS models of peach at the room temperature were the optimal, with prediction correlation coefficient (Rp) at 0.819, and the root mean square error of prediction (RMSEP) at 0.841°Brix. The Rp and RMSEP of firmness were 0.811 and 0.912 N, respectively. In cold storage, the PLS model of SSC processed by CARS was the optimal with the Rp of 0.828 and RMSEP of 0.816°Brix. The Rp and RMSEP of the optimal firmness model were 0.785 and 1.188 N, respectively. This study on the quality of peach can better analyze the quality change of peach during storage, and has certain value for guiding the storage of peach and subsequent related research.

中文翻译:

可见/近红外光谱法检测贮藏过程中多汁桃的品质

摘要 为研究桃(多汁桃)贮藏过程中内在品质的变化,进一步探讨通过可见/近红外光谱(VIS/NIR)预测桃品质的可行性。首先,采用果实品质动态检测仪采集两种贮藏条件下桃的光谱,测定其可溶性固形物含量(SSC)、硬度和重量。然后采用偏最小二乘判别分析(PLS-DA)建立桃子分类模型,准确率超过90%。最后,采用偏最小二乘 (PLS) 回归结合预处理方法来开发 SSC 和硬度模型。还使用无信息变量消除(UVE)和竞争性自适应重新加权采样(CARS)对模型进行优化以获得最佳预测模型。结果表明,常温下桃的CARS-PLS模型最优,预测相关系数(Rp)为0.819,预测均方根误差(RMSEP)为0.841°Brix。硬度的 Rp 和 RMSEP 分别为 0.811 和 0.912 N。在冷库中,CARS处理的SSC PLS模型最优,Rp为0.828,RMSEP为0.816°Brix。最佳硬度模型的 Rp 和 RMSEP 分别为 0.785 和 1.188 N。该桃品质研究可以更好地分析桃在贮藏过程中的品质变化,对指导桃贮藏及后续相关研究具有一定价值。结果表明,常温下桃的CARS-PLS模型最优,预测相关系数(Rp)为0.819,预测均方根误差(RMSEP)为0.841°Brix。硬度的 Rp 和 RMSEP 分别为 0.811 和 0.912 N。在冷库中,CARS处理的SSC的PLS模型最优,Rp为0.828,RMSEP为0.816°Brix。最佳硬度模型的 Rp 和 RMSEP 分别为 0.785 和 1.188 N。该桃品质研究可以更好地分析桃在贮藏过程中的品质变化,对指导桃贮藏及后续相关研究具有一定价值。结果表明,常温下桃的CARS-PLS模型最优,预测相关系数(Rp)为0.819,预测均方根误差(RMSEP)为0.841°Brix。硬度的 Rp 和 RMSEP 分别为 0.811 和 0.912 N。在冷库中,CARS处理的SSC PLS模型最优,Rp为0.828,RMSEP为0.816°Brix。最佳硬度模型的 Rp 和 RMSEP 分别为 0.785 和 1.188 N。该桃品质研究可以更好地分析桃在贮藏过程中的品质变化,对指导桃贮藏及后续相关研究具有一定价值。以及 0.841°Brix 的预测均方根误差 (RMSEP)。硬度的 Rp 和 RMSEP 分别为 0.811 和 0.912 N。在冷库中,CARS处理的SSC PLS模型最优,Rp为0.828,RMSEP为0.816°Brix。最佳硬度模型的 Rp 和 RMSEP 分别为 0.785 和 1.188 N。该桃品质研究可以更好地分析桃在贮藏过程中的品质变化,对指导桃贮藏及后续相关研究具有一定价值。以及 0.841°Brix 的预测均方根误差 (RMSEP)。硬度的 Rp 和 RMSEP 分别为 0.811 和 0.912 N。在冷库中,CARS处理的SSC PLS模型最优,Rp为0.828,RMSEP为0.816°Brix。最佳硬度模型的 Rp 和 RMSEP 分别为 0.785 和 1.188 N。该桃品质研究可以更好地分析桃在贮藏过程中的品质变化,对指导桃贮藏及后续相关研究具有一定价值。
更新日期:2020-11-01
down
wechat
bug