当前位置: X-MOL 学术Solid State Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
In-situ hard template synthesis of mesoporous carbon/graphite carbon nitride (C/CN-T-x) composites with high photocatalytic activities under visible light irridation
Solid State Sciences ( IF 3.5 ) Pub Date : 2020-11-01 , DOI: 10.1016/j.solidstatesciences.2020.106428
Mengna Hao , Yan Li , Luyao Gao , Chunnuan Ji , Rongjun Qu , Zhenglong Yang , Changmei Sun , Ying Zhang

Abstract Carbon/graphite carbon nitride (C/CN-T-x) hybrid composites with high photocatalytic activities under visible light irradiation were synthesized by an in-situ hard template method using the partially formaldehyde-modified dicyandiamide (PFMD) and tetraethyl orthosilicate (TEOS) as the precursors and template, respectively. The structures of the as-prepared composites were characterized by thermogravimetric analysis (TGA), X-ray diffraction (XRD), elemental analysis, nitrogen adsorption-desorption, scanning electron microscopy (SEM), transmission electron microscopy (TEM), photoluminescence (PL) spectroscopy, and X-ray photoelectron spectroscopy (XPS). The composite prepared under the optimal conditions exhibits the large surface area of 174 m2・g−1 and high photocatalytic activity for the degradation of methylene blue (MB) under visible light irradiation. The significant improvement in photocatalytic activity of the composite, as compared with the pure graphite carbon nitride (CN), is attributed to the large surface area, strong dye adsorption ability and enhanced separation efficiency of photogenerated electron-hole pairs.

中文翻译:

可见光照射下具有高光催化活性的介孔碳/石墨氮化碳(C/CN-Tx)复合材料的原位硬模板合成

摘要 以部分甲醛改性双氰胺 (PFMD) 和原硅酸四乙酯 (TEOS) 为原料,采用原位硬模板法合成了在可见光照射下具有高光催化活性的碳/石墨氮化碳 (C/CN-Tx) 杂化复合材料。分别为前体和模板。通过热重分析 (TGA)、X 射线衍射 (XRD)、元素分析、氮吸附-解吸、扫描电子显微镜 (SEM)、透射电子显微镜 (TEM)、光致发光 (PL)、 ) 光谱和 X 射线光电子能谱 (XPS)。在最佳条件下制备的复合材料具有 174 m2・g-1 的大表面积和在可见光照射下对亚甲蓝 (MB) 降解的高光催化活性。与纯石墨氮化碳(CN)相比,该复合材料的光催化活性显着提高,这归因于较大的表面积、较强的染料吸附能力和光生电子-空穴对的分离效率提高。
更新日期:2020-11-01
down
wechat
bug