当前位置: X-MOL 学术J. Phys. Chem. Solids › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Electrodeposited more-hydrophilic nano-nest polyaniline electrodes for supercapacitor application
Journal of Physics and Chemistry of Solids ( IF 4 ) Pub Date : 2021-02-01 , DOI: 10.1016/j.jpcs.2020.109774
Shoyebmohamad F. Shaikh , Fouzia F.M. Shaikh , Arif V. Shaikh , Mohd Ubaidullah , Abdullah M. Al-Enizi , Habib M. Pathan

Abstract Nano-nest polyaniline electrodes were synthesized by using electrodeposition method at room temperature (27 °C) without the use of templating. The fabrication of supercapacitors -are carried out by direct electrodeposition on stainless steel and indium tin oxide (ITO) substrates. The electrode with a lower contact angle shows 83% enhancement in supercapacitive property as compared to those with higher contact angle. Furthermore, the galvanostatic and potentiostatic experiments have been conducted on stainless steel substrate shown that the polyaniline material has very good stability and with maximum capacitance 757 F g-1 and minimum capacitance 412 F g-1 in 1 M H2SO4 electrolyte within the potential windows of −200 to 800 mV vs SCE at 5 mVs−1 scan rate. The formation of elemental bonds is confirmed from FTIR studies. This unexpected rise in capacitance is discussed in terms of the electroactive material/electrolyte interface area. The polyaniline (PANI) are one of the most promising contenders for high-performance electrochemical supercapacitor due to its excellent specific capacitance, large power density, high charge-discharge rate, and better columbic efficiency.

中文翻译:

用于超级电容器应用的电沉积更亲水的纳米巢聚苯胺电极

摘要 采用电沉积法在室温(27 ℃)下合成纳米巢聚苯胺电极,不使用模板。超级电容器的制造是通过直接电沉积在不锈钢和氧化铟锡 (ITO) 基板上进行的。与具有较高接触角的电极相比,具有较低接触角的电极的超级电容性能提高了 83%。此外,在不锈钢基板上进行的恒电流和恒电位实验表明,聚苯胺材料具有非常好的稳定性,在 1 M H2SO4 电解质中的最大电容为 757 F g-1,最小电容为 412 F g-1 −200 至 800 mV 对比 SCE,扫描速率为 5 mVs−1。FTIR 研究证实了元素键的形成。在电活性材料/电解质界面面积方面讨论了电容的这种意外上升。聚苯胺(PANI)具有优异的比电容、大功率密度、高充放电速率和更好的库伦效率,是高性能电化学超级电容器最有前途的竞争者之一。
更新日期:2021-02-01
down
wechat
bug