当前位置: X-MOL 学术J. Alloys Compd. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Effects of nitrogen incorporation on N-doped DLC thin film electrodes fabricated by dielectric barrier discharge plasma: Structural evolution and electrochemical performances
Journal of Alloys and Compounds ( IF 6.2 ) Pub Date : 2021-02-01 , DOI: 10.1016/j.jallcom.2020.157298
M. Nilkar , F.E. Ghodsi , S. Jafari , D. Thiry , R. Snyders

Abstract Hydrogenated amorphous carbon-nitride (a-C:H:N) thin films (or N-DLC) were deposited on glass and FTO substrates by a dielectric barrier discharge plasma technique using CH4/N2 gas mixture. The XPS results reveal that as the nitrogen ratio in the CH4:N2 gas mixture increases from 50% to 80%, the nitrogen doping level increased from 5.5 at.% to a maximum value of 11.5 at.% with especially high amounts of pyridinic (6.4 at %), and graphitic (4.7 at %) nitrogen. FEG-SEM results indicate a worm-like porous morphology for the 20%:80% CH4:N2 sample, relying on high amounts of pyridinic and graphitic N, which is a favorable structure to boost the ions diffusion process. This optimized N-DLC electrode with high nitrogen incorporation not only exhibits a nearly electrochemical reversibility with ΔEp (125 mV) and Jpa/Jpc (1.03) in K3Fe(CN)6 electrolyte, but also a fast charge transfer constant (6.59 × 10−4 cms−1). The excellent performance of this electrode is ascribed to the high nitrogen doping level, large surface area, the abundant holes, and the high nano-pore volume possessing excellent electron transfer ability for redox reaction. N-DLC thin film exhibits a promising prospect for biosensors and electrochemical electrode applications.

中文翻译:

氮掺入对介质阻挡放电等离子体制备的 N 掺杂 DLC 薄膜电极的影响:结构演变和电化学性能

摘要 通过介质阻挡放电等离子体技术使用 CH4/N2 气体混合物在玻璃和 FTO 衬底上沉积氢化非晶碳氮化物 (aC:H:N) 薄膜(或 N-DLC)。XPS 结果表明,当 CH4:N2 气体混合物中的氮比从 50% 增加到 80% 时,氮掺杂水平从 5.5 at.% 增加到最大值 11.5 at.%,特别是大量的吡啶( 6.4 at %) 和石墨 (4.7 at %) 氮。FEG-SEM 结果表明 20%:80% CH4:N2 样品的蠕虫状多孔形态,依赖于大量的吡啶和石墨 N,这是促进离子扩散过程的有利结构。这种具有高氮掺入量的优化 N-DLC 电极不仅表现出与 ΔEp (125 mV) 和 Jpa/Jpc (1. 03) 在 K3Fe(CN)6 电解质中,但也是快速电荷转移常数 (6.59 × 10−4 cms−1)。该电极的优异性能归功于高氮掺杂水平、大表面积、丰富的空穴和高纳米孔体积,具有优异的氧化还原反应电子转移能力。N-DLC薄膜在生物传感器和电化学电极应用方面具有广阔的前景。
更新日期:2021-02-01
down
wechat
bug