当前位置: X-MOL 学术J. Alloys Compd. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Multifunctional films of poly(vinylidene fluoride)/ZnFe2O4 nanofibers for nanogenerator applications
Journal of Alloys and Compounds ( IF 6.2 ) Pub Date : 2021-02-01 , DOI: 10.1016/j.jallcom.2020.157189
P. Durga Prasad , J. Hemalatha

Abstract A two-step synthesis method was used to prepare a flexible PVDF/ZnFe2O4 multiferroic nanocomposite film. ZnFe2O4 nanofibers synthesized using electrospinning technique were incorporated into a PVDF matrix to form PVDF/ZnFe2O4 composite films through the solution-casting process. XRD patterns confirmed the formation of the polar β-phase in films, which is responsible for ferroelectricity. The percentage of the β-phase, calculated by FTIR analysis, reached 88% with the incorporation of ZnFe2O4 in PVDF. The transformation of α to β-phase microstructure were examined using scanning electron microscopy (SEM) and atomic force microscopy (AFM). The dielectric constant and tangent loss of the composites with respect to ZnFe2O4 loading were measured. The dielectric constant increase with the increasing concentration of ZnFe2O4, and a maximum value of 30 was obtained for a ZnFe2O4 concentration of 15 wt%. Ferroelectric properties were analyzed by taking into consideration the domain switching behavior, which was investigated by dynamic contact electrostatic force microscopy (DC-EFM), whereas the magnetic properties were analyzed using magnetic force microscopy (MFM). The as-synthesized composite films were further used to fabricate a nanogenerator, which was capable of generating up to 7 V (peak–peak) as a maximum open circuit voltage for a 15 wt% ZnFe2O4-loaded film at 1.5 N of applied force. In addition, the nanogenerator delivered an output power of 4 μW at a load resistance of 500 kΩ, and the results were compared with previous results.

中文翻译:

用于纳米发电机应用的聚(偏二氟乙烯)/ZnFe2O4 纳米纤维多功能薄膜

摘要 采用两步合成法制备了柔性PVDF/ZnFe2O4多铁性纳米复合薄膜。将使用静电纺丝技术合成的 ZnFe2O4 纳米纤维结合到 PVDF 基体中,通过溶液浇铸工艺形成 PVDF/ZnFe2O4 复合薄膜。XRD 图案证实了薄膜中极性 β 相的形成,这是铁电性的原因。随着 ZnFe2O4 掺入 PVDF,通过 FTIR 分析计算出的 β 相百分比达到 88%。使用扫描电子显微镜 (SEM) 和原子力显微镜 (AFM) 检查 α 相向 β 相微观结构的转变。测量了复合材料相对于 ZnFe2O4 负载的介电常数和切线损耗。介电常数随着 ZnFe2O4 浓度的增加而增加,ZnFe2O4 浓度为 15%(重量)时,最大值为 30。通过考虑畴切换行为来分析铁电性能,该行为通过动态接触静电力显微镜 (DC-EFM) 进行研究,而磁性能则使用磁力显微镜 (MFM) 进行分析。合成的复合膜进一步用于制造纳米发电机,该发电机能够在 1.5 N 的外加力下产生高达 7 V(峰-峰)的最大开路电压,作为负载 15 wt% ZnFe2O4 的薄膜。此外,纳米发电机在负载电阻为 500 kΩ 时提供 4 μW 的输出功率,并将结果与​​之前的结果进行比较。通过考虑畴切换行为来分析铁电性能,该行为通过动态接触静电力显微镜 (DC-EFM) 进行研究,而磁性能则使用磁力显微镜 (MFM) 进行分析。合成的复合膜进一步用于制造纳米发电机,该发电机能够在 1.5 N 的外加力下产生高达 7 V(峰-峰)的最大开路电压,作为负载 15 wt% ZnFe2O4 的薄膜。此外,纳米发电机在负载电阻为 500 kΩ 时提供 4 μW 的输出功率,并将结果与​​之前的结果进行比较。通过考虑畴切换行为来分析铁电性能,该行为通过动态接触静电力显微镜 (DC-EFM) 进行研究,而磁性能则使用磁力显微镜 (MFM) 进行分析。合成的复合膜进一步用于制造纳米发电机,该发电机能够在 1.5 N 的外加力下产生高达 7 V(峰-峰)的最大开路电压,作为负载 15 wt% ZnFe2O4 的薄膜。此外,纳米发电机在负载电阻为 500 kΩ 时提供 4 μW 的输出功率,并将结果与​​之前的结果进行比较。合成后的复合膜进一步用于制造纳米发电机,该发电机能够在 1.5 N 的外加力下产生高达 7 V(峰-峰)的最大开路电压,作为负载 15 wt% ZnFe2O4 的薄膜。此外,纳米发电机在负载电阻为 500 kΩ 时提供 4 μW 的输出功率,并将结果与​​之前的结果进行比较。合成的复合膜进一步用于制造纳米发电机,该发电机能够在 1.5 N 的外加力下产生高达 7 V(峰-峰)的最大开路电压,作为负载 15 wt% ZnFe2O4 的薄膜。此外,纳米发电机在负载电阻为 500 kΩ 时提供 4 μW 的输出功率,并将结果与​​之前的结果进行比较。
更新日期:2021-02-01
down
wechat
bug