当前位置: X-MOL 学术Int. J. Thermophys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Graphene Aerogels: Structure Control, Thermal Characterization and Thermal Transport
International Journal of Thermophysics ( IF 2.2 ) Pub Date : 2020-09-22 , DOI: 10.1007/s10765-020-02740-6
Qin Wang , Liping Xiang , Di Mei , Yangsu Xie

Graphene aerogel (GA) as one of the innovative carbon nanostructured materials is superior with flexibility, strong mechanical strength, lightweight, high porosity and excellent durability, which attracted wide research interests and fulfill the requirements for various novel applications in energy conversion and storage, sensor, thermal management, and environment areas, etc. The thermal property among other important properties of GA is important for its novel applications. In this work, we first introduce the synthesis and microstructure control method for GA, including pore size control, anisotropic pore structure control, and heterostructure control. The methods for measuring the thermal conductivity of bulk GAs in air (apparent k) and the k of solid matrix of GAs are introduced in detail, respectively. Finally, we review the thermal transport models for GAs, including the air–solid coupling models, models for calculating the intrinsic thermal properties of graphene nanoflakes, as well as the thermal reffusivity model and dominating thermal contact resistance model. Challenges and opportunities in the study of thermal transport in 3D GAs are discussed. Considering the remarkable complexity of physical/chemical structure of GAs, there is still a large room in understanding fundamentals of energy transport in these three-dimensional graphene networks, which will pave the way toward their novel applications in the near future.

中文翻译:

石墨烯气凝胶:结构控制、热表征和热传输

石墨烯气凝胶(GA)作为一种创新的碳纳米结构材料,具有柔韧性好、机械强度高、重量轻、孔隙率高、耐久性好等优点,引起了广泛的研究兴趣,满足了能量转换和存储、传感器等各种新型应用的需求。 、热管理和环境领域等。GA 的其他重要特性中的热特性对其新应用很重要。在这项工作中,我们首先介绍了 GA 的合成和微观结构控制方法,包括孔径控制、各向异性孔结构控制和异质结构控制。分别详细介绍了测量空气中块状GAs的热导率(表观k)和GAs固体基体的k的方法。最后,我们回顾了 GA 的热传输模型,包括气-固耦合模型、计算石墨烯纳米薄片固有热特性的模型,以及热扩散模型和主要热接触电阻模型。讨论了 3D GA 中热传输研究中的挑战和机遇。考虑到 GAs 物理/化学结构的显着复杂性,理解这些三维石墨烯网络中能量传输的基本原理仍有很大的空间,这将为它们在不久的将来的新应用铺平道路。讨论了 3D GA 中热传输研究中的挑战和机遇。考虑到 GAs 物理/化学结构的显着复杂性,理解这些三维石墨烯网络中能量传输的基本原理仍有很大的空间,这将为它们在不久的将来的新应用铺平道路。讨论了 3D GA 中热传输研究中的挑战和机遇。考虑到 GAs 物理/化学结构的显着复杂性,理解这些三维石墨烯网络中能量传输的基本原理仍有很大的空间,这将为它们在不久的将来的新应用铺平道路。
更新日期:2020-09-22
down
wechat
bug