当前位置: X-MOL 学术Adsorption › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Temperature and pressure dynamics in sorption cells
Adsorption ( IF 3.3 ) Pub Date : 2020-09-22 , DOI: 10.1007/s10450-020-00270-z
A. Davidesko , N. Tzabar

Sorption processes are incorporated in a wide range of applications. A heat and mass transfer model which calculates the temperature distribution and pressure in a sorption cell is desired for developing any sorption system. In this paper, we present a one-dimensional dynamic numerical model for closed sorption cell systems, which is based on adsorption isotherm measurements of the working pair. The model is governed by energy and mass balances, where a uniform pressure inside the cell is assumed, the thermal contact resistances between different materials are incorporated, and the material properties are temperature dependent. The model is implemented by an implicit finite differences method, aiming to predict the system performance and to allow the optimization of the mechanical design and operating conditions. A design-dependent correction factor is suggested to compensate for the one-dimensional assumption, especially for predicting the pressure in the cell. The numerical model is successfully validated against experimental results of nitrogen—activated carbon systems, at several operating conditions. The numerical model allows extensive investigations on sorption system designs, for example, the dependency of the sorption cell performances on the heater and cooler designs are discussed. The results show that different designs are required for providing either high thermal efficiencies or high inner temperature and pressure. The model is an essential tool in our laboratory for researching and developing different sorption based systems.



中文翻译:

吸附池中的温度和压力动态

吸附过程被广泛应用。为了开发任何吸附系统,需要一种用于计算吸附池中温度分布和压力的传热传质模型。在本文中,我们提出了一种基于工作对的吸附等温线测量的封闭式吸附池系统的一维动态数值模型。该模型由能量和质量平衡控制,其中假定单元内部压力均匀,并结合了不同材料之间的热接触电阻,并且材料属性与温度有关。该模型是通过隐式有限差分方法实现的,旨在预测系统性能并允许机械设计和运行条件的优化。建议依赖于设计的校正因子来补偿一维假设,尤其是用于预测单元中的压力。该数值模型已在多个操作条件下针对氮气-活性炭系统的实验结果进行了成功验证。数值模型允许对吸附系统设计进行广泛的研究,例如,讨论了吸附室性能对加热器和冷却器设计的依赖性。结果表明,需要不同的设计来提供高热效率或高内部温度和压力。该模型是我们实验室中用于研究和开发基于吸附的不同系统的重要工具。该数值模型已在多个操作条件下针对氮气-活性炭系统的实验结果进行了成功验证。数值模型允许对吸附系统设计进行广泛研究,例如,讨论了吸附室性能对加热器和冷却器设计的依赖性。结果表明,需要不同的设计来提供高热效率或高内部温度和压力。该模型是我们实验室中用于研究和开发基于吸附的不同系统的重要工具。该数值模型已在多个操作条件下针对氮气-活性炭系统的实验结果进行了成功验证。数值模型允许对吸附系统设计进行广泛研究,例如,讨论了吸附室性能对加热器和冷却器设计的依赖性。结果表明,需要不同的设计来提供高热效率或高内部温度和压力。该模型是我们实验室中用于研究和开发基于吸附的不同系统的重要工具。讨论了吸附池性能对加热器和冷却器设计的依赖性。结果表明,需要不同的设计来提供高热效率或高内部温度和压力。该模型是我们实验室中用于研究和开发基于吸附的不同系统的重要工具。讨论了吸附池性能对加热器和冷却器设计的依赖性。结果表明,需要不同的设计来提供高热效率或高内部温度和压力。该模型是我们实验室中用于研究和开发基于吸附的不同系统的重要工具。

更新日期:2020-09-22
down
wechat
bug