当前位置: X-MOL 学术J. Syst. Sci. Complex. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Lane Departure Assistance Coordinated Control System for In-Wheel Motor Drive Vehicles Based on Dynamic Extension Boundary Decision
Journal of Systems Science and Complexity ( IF 2.1 ) Pub Date : 2020-08-08 , DOI: 10.1007/s11424-020-8340-8
Hongbo Wang , Wei Cui , Bin Ye

Aiming at the advantages in active safety control of in-wheel motor drive vehicles, the classified decision-control-execution is proposed to the lane departure assistance system under the premise of ensuring the stability of the vehicle. The dynamic extension boundaries which vary with vehicle speed, road curvature and road adhesion coefficient are designed in the decision layer by using the neural network algorithm, which divides different dangerous degrees into different decision regions. The active differential steering controller, the electronic differential controller and their coordinated control strategy are designed in the control layer, and the corresponding control is carried out among different decision regions. In order to avoid the dangerous situation of secondary deviation caused by the existence of drift angle when the vehicle is rectified to the lane centerline, the heading angle controller is then designed in the control layer. The different torque distribution modes are divided according to the current vehicle speed, road adhesion coefficient and lateral acceleration in the execution layer, and the economic distribution, stability distribution, joint distribution are correspondingly executed among different torque distribution modes. Finally, Carsim and Matlab/Simulink are used for simulation verification.

中文翻译:

基于动态扩展边界决策的轮毂机动车辆车道偏离辅助协调控制系统

针对轮毂机动车辆主动安全控制的优点,在保证车辆稳定性的前提下,对车道偏离辅助系统提出了分类决策控制执行方法。利用神经网络算法在决策层中设计了随车速,道路曲率和道路附着系数而变化的动态扩展边界,将不同的危险程度划分为不同的决策区域。在控制层中设计了主动差速转向控制器,电子差速控制器及其协调控制策略,并在不同的决策区域之间进行了相应的控制。为了避免在将车辆校正到车道中心线时由于漂移角的存在而导致二次偏离的危险情况,于是在控制层中设计了方位角控制器。在执行层中,根据当前的车速,路面附着系数和横向加速度来划分不同的扭矩分配模式,并在不同的扭矩分配模式之间相应地执行经济分配,稳定性分配,关节分配。最后,将Carsim和Matlab / Simulink用于仿真验证。执行层中的路面附着系数和横向加速度,以及经济分配,稳定性分配,关节分配分别在不同的转矩分配方式之间执行。最后,将Carsim和Matlab / Simulink用于仿真验证。执行层中的路面附着系数和横向加速度,以及经济分配,稳定性分配,关节分配分别在不同的转矩分配方式之间执行。最后,将Carsim和Matlab / Simulink用于仿真验证。
更新日期:2020-08-08
down
wechat
bug