当前位置: X-MOL 学术J. Meteorol. Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Effects of Microphysical Latent Heating on the Rapid Intensification of Typhoon Hato (2017)
Journal of Meteorological Research ( IF 3.2 ) Pub Date : 2020-05-11 , DOI: 10.1007/s13351-020-9076-z
Dajun Zhao , Yubin Yu , Jinfang Yin , Hongxiong Xu

A 72-h cloud-resolving numerical simulation of Typhoon Hato (2017) is performed by using the Weather Research and Forecasting (WRF) model with the Advanced Research WRF (ARW) core (V3.8.1) on a horizontal resolution of 2 km. To enhance the background tropical cyclone structure and intensity, a vortex dynamic initialization scheme with a terrain-filtering algorithm is utilized. The model reproduces reasonably well the track, structure, and intensity change of Typhoon Hato. More specifically, the change trend of simulated maximum wind speed is consistent with that of best-track analysis, and the simulated maximum wind of 49 m s−1 is close to that (52 m s−1) of the best-track analysis, indicating that the model has successfully captured the rapid intensification (RI) of Typhoon Hato (2017). Analyses of the model outputs reveal that the total microphysical latent heating of the inner-core region associated with enhanced vertical upward motion reaches its maximum at 9-km height in the upper troposphere during the RI stage. The dominant microphysical processes with positive latent heat contributions (i.e., heating effect) are water vapor condensation into cloud water (67.6%), depositional growth of ice (12.9%), and generation (nucleation) of ice from vapor (7.9%). Those with negative latent heat contributions (cooling effect) are evaporation of rain (47.6%), melting of snow (27.7%), and melting of graupel (9.8%). Sensitivity experiments further show that the intensification speed and peak intensity of this typhoon are highly correlated to the dominant heating effect. A significant increase in graupel over 5-10-km height and snow at 10–14-km height in the inner-core region of Typhoon Hato corresponds well with its RI stage, and the latent heating from nucleation and depositional growth is crucial to the RI of simulated Hato.

中文翻译:

微物理潜热对台风哈托快速增强的影响(2017)

通过使用天气研究和预报(WRF)模型和Advanced Research WRF(ARW)核心(V3.8.1)在2 km的水平分辨率上进行的台风哈托(2017)的72小时云解析数值模拟。为了增强背景热带气旋的结构和强度,利用了具有地形滤波算法的涡旋动态初始化方案。该模型合理地再现了台风哈托的轨迹,结构和强度变化。更具体地,模拟的最大风速的变化趋势与最佳轨道分析的趋势一致,并且模拟的最大风速49 ms -1接近于(52 ms -1)的最佳轨道分析,表明该模型已成功捕获了台风哈托(2017)的快速增强(RI)。对模型输出的分析表明,在RI阶段,对流层上部9 km高处,与增强的垂直向上运动相关的内芯区域的总微物理潜热达到最大值。具有潜在潜热贡献(即加热效应)的主要微观过程是水蒸气凝结成云水(67.6%),冰的沉积增长(12.9%)以及由蒸气产生(成核)冰(7.9%)。潜热贡献为负(冷却效果)的是雨水的蒸发(47.6%),雪的融化(27.7%)和gra的融化(9.8%)。敏感性实验还表明,该台风的增强速度和峰值强度与主要的热效应高度相关。台风哈多的5-10 km以上高度的草地up和10–14 km高度的积雪显着增加与其RI阶段非常吻合,成核和沉积生长的潜热对于冰期至关重要。模拟Hato的RI。
更新日期:2020-05-11
down
wechat
bug