当前位置: X-MOL 学术Adv. Mater. Interfaces › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Bandgap Renormalization in Monolayer MoS2 on CsPbBr3 Quantum Dots via Charge Transfer at Room Temperature
Advanced Materials Interfaces ( IF 5.4 ) Pub Date : 2020-09-21 , DOI: 10.1002/admi.202000835
Subash Adhikari 1, 2 , Ji‐Hee Kim 1, 2 , Bumsub Song 1, 2 , Manh‐Ha Doan 1, 2 , Minh Dao Tran 1, 2 , Leyre Gomez 3 , Hyun Kim 1, 2 , Hamza Zad Gul 1, 2 , Ganesh Ghimire 1, 2 , Seok Joon Yun 1, 2 , Tom Gregorkiewicz 3 , Young Hee Lee 1, 2
Affiliation  

Many‐body effect and strong Coulomb interaction in monolayer transition metal dichalcogenides lead to intrinsic bandgap shrinking, originating from the renormalization of electrical/optical bandgap, exciton binding energy, and spin‐orbit splitting. This renormalization phenomenon has been commonly observed at low temperature and requires high photon excitation density. Here, the augmented bandgap renormalization (BGR) in monolayer MoS2 anchored on CsPbBr3 perovskite quantum dots at room temperature via charge transfer is presented. The amount of electrons significantly transferred from perovskite gives rise to the large plasma screening in MoS2. The bandgap in heterostructure is red‐shifted by 84 meV with minimal pump fluence, the highest BGR in monolayer MoS2 at room temperature, which saturates with a further increase of pump fluence. Further, it is found that the magnitude of BGR inversely relates to Thomas–Fermi screening length. This provides plenty of room to explore the BGR within existing vast libraries of large bandgap van der Waals heterostructure toward practical devices such as solar cells, photodetectors, and light‐emitting‐diodes.

中文翻译:

在室温下通过电荷转移在CsPbBr3量子点上单层MoS2中的带隙重整化

单层过渡金属二硫化碳中的多体效应和强大的库仑相互作用会导致固有的带隙收缩,这是由于电/光带隙的正态化,激子结合能和自旋轨道分裂引起的。这种重归一化现象通常在低温下观察到,并且需要高光子激发密度。在这里,提出了通过电荷转移在室温下锚定在CsPbBr 3钙钛矿量子点上的单层MoS 2中增强的带隙重整化(BGR)。从钙钛矿中转移出来的大量电子引起了MoS 2的大型等离子体筛选。异质结构中的带隙以84 meV红移,泵浦通量最小,单层MoS中的BGR最高2在室温下饱和,随着泵注量的进一步增加而饱和。此外,发现BGR的大小与Thomas-Fermi筛查长度成反比。这为探索大型带隙范德华异质结构的现有庞大库中的BGR提供了足够的空间,可用于实际设备,例如太阳能电池,光电探测器和发光二极管。
更新日期:2020-11-06
down
wechat
bug