当前位置: X-MOL 学术Fuel › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Atomization of gelled kerosene by multi-hole pintle injector for rocket engines
Fuel ( IF 7.4 ) Pub Date : 2021-02-01 , DOI: 10.1016/j.fuel.2020.119212
Wooseok Song , Juhyun Hwang , Jaye Koo

Abstract Gelled propellants for rocket propulsion present various advantages, such as storability with regard to liquid rocket propellants and a high specific impulse with regard to solid rocket propellants. However, one of the main limitations of gelled propellants in rocket propulsion is their low mixing performance resulting from their high viscosity. For these reasons, conventional injectors such as coaxial and pintle injectors are not suitable for spraying gelled propellants. To address this issue, we have herein devised new methods to increase the mixing performance. For the gelled propellant, liquid kerosene was compounded with 5 wt% of Thixatrol ST, a gelling agent, and shear viscosity data according to the shear rate were measured to confirm viscosity. Two types of injectors—flat type and deflector—were used to confirm the spray characteristics, such as spray angle, via the backlight image technique. The spray angle was formulated according to the total momentum ratio for comparison with the measured experimental data, and the result regarding the measured spray angle in the deflector type injector satisfies the expected spray angle. The dominant difference in spray characteristics between the flat type and deflector type injectors is in terms of a liquid jet stream, related to the breakup and atomization processes. In the case of the flat type injector, the liquid jet stream was detected even for a high total momentum ratio. However, in the case of the deflector type injector, the liquid jet stream disappeared with an increase in the total momentum ratio.

中文翻译:

火箭发动机多孔轴针喷油器雾化胶凝煤油

摘要 用于火箭推进的凝胶推进剂具有多种优点,例如相对于液体火箭推进剂的可存储性和相对于固体火箭推进剂的高比冲。然而,凝胶推进剂在火箭推进中的主要限制之一是其高粘度导致的低混合性能。由于这些原因,传统的喷射器如同轴喷射器和针栓喷射器不适合喷射胶凝推进剂。为了解决这个问题,我们在此设计了新方法来提高混合性能。对于凝胶推进剂,将液体煤油与 5wt% 的 Thixatrol ST、胶凝剂混合,并根据剪切速率测量剪切粘度数据以确认粘度。两种类型的喷射器——平面型和偏转器——用于通过背光图像技术确认喷雾特性,例如喷雾角度。根据总动量比制定喷雾角与实测实验数据进行比较,在偏转式喷油器中实测喷雾角的结果满足预期的喷雾角。扁平型和偏转型喷射器之间喷雾特性的主要区别在于液体喷射流,与破碎和雾化过程有关。在扁平型喷射器的情况下,即使在高总动量比的情况下也能检测到液体喷射流。然而,在偏转型喷射器的情况下,液体射流随着总动量比的增加而消失。通过背光图像技术。根据总动量比制定喷雾角与实测实验数据进行比较,在偏转式喷油器中实测喷雾角的结果满足预期的喷雾角。扁平型和偏转型喷射器之间喷雾特性的主要区别在于液体喷射流,与破碎和雾化过程有关。在扁平型喷射器的情况下,即使在高总动量比的情况下也能检测到液体喷射流。然而,在偏转型喷射器的情况下,液体射流随着总动量比的增加而消失。通过背光图像技术。根据总动量比制定喷雾角与实测实验数据进行比较,在偏转式喷油器中实测喷雾角的结果满足预期的喷雾角。扁平型和偏转型喷射器之间喷雾特性的主要区别在于液体喷射流,与破碎和雾化过程有关。在扁平型喷射器的情况下,即使在高总动量比的情况下也能检测到液体喷射流。然而,在偏转型喷射器的情况下,液体射流随着总动量比的增加而消失。并且在偏转式喷油器中测量的喷射角的结果满足预期的喷射角。扁平型和偏转型喷射器之间喷雾特性的主要区别在于液体喷射流,与破碎和雾化过程有关。在扁平型喷射器的情况下,即使在高总动量比的情况下也能检测到液体喷射流。然而,在偏转型喷射器的情况下,液体射流随着总动量比的增加而消失。并且在偏转式喷油器中测量的喷射角的结果满足预期的喷射角。扁平型和偏转型喷射器之间喷雾特性的主要区别在于液体喷射流,与破碎和雾化过程有关。在扁平型喷射器的情况下,即使在高总动量比的情况下也能检测到液体喷射流。然而,在偏转型喷射器的情况下,液体射流随着总动量比的增加而消失。在扁平型喷射器的情况下,即使对于高总动量比也能检测到液体喷射流。然而,在偏转型喷射器的情况下,液体射流随着总动量比的增加而消失。在扁平型喷射器的情况下,即使对于高总动量比也能检测到液体喷射流。然而,在偏转式喷射器的情况下,液体射流随着总动量比的增加而消失。
更新日期:2021-02-01
down
wechat
bug