当前位置: X-MOL 学术Exp. Eye Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Development, structure, and bioengineering of the human corneal stroma: A review of collagen-based implants
Experimental Eye Research ( IF 3.4 ) Pub Date : 2020-09-21 , DOI: 10.1016/j.exer.2020.108256
Aurélien Tidu , Marie-Claire Schanne-Klein , Vincent M. Borderie

Bio-engineering technologies are currently used to produce biomimetic artificial corneas that should present structural, chemical, optical, and biomechanical properties close to the native tissue. These properties are mainly supported by the corneal stroma which accounts for 90% of corneal thickness and is mainly made of collagen type I. The stromal collagen fibrils are arranged in lamellae that have a plywood-like organization. The fibril diameter is between 25 and 35 nm and the interfibrillar space about 57 nm. The number of lamellae in the central stroma is estimated to be 300. In the anterior part, their size is 10–40 μm. They appear to be larger in the posterior part of the stroma with a size of 60–120 μm. Their thicknesses also vary from 0.2 to 2.5 μm. During development, the acellular corneal stroma, which features a complex pattern of organization, serves as a scaffold for mesenchymal cells that invade and further produce the cellular stroma. Several pathways including Bmp4, Wnt/β-catenin, Notch, retinoic acid, and TGF-β, in addition to EFTFs including the mastering gene Pax-6, are involved in corneal development. Besides, retinoic acid and TGF- β seem to have a crucial role in the neural crest cell migration in the stroma. Several technologies can be used to produce artificial stroma. Taking advantage of the liquid-crystal properties of acid-soluble collagen, it is possible to produce transparent stroma-like matrices with native-like collagen I fibrils and plywood-like organization, where epithelial cells can adhere and proliferate. Other approaches include the use of recombinant collagen, cross-linkers, vitrification, plastically compressed collagen or magnetically aligned collagen, providing interesting optical and mechanical properties. These technologies can be classified according to collagen type and origin, presence of telopeptides and native-like fibrils, structure, and transparency. Collagen matrices feature transparency >80% for the appropriate 500-μm thickness. Non-collagenous matrices made of biopolymers including gelatin, silk, or fish scale have been developed which feature interesting properties but are less biomimetic. These bioengineered matrices still need to be colonized by stromal cells to fully reproduce the native stroma.



中文翻译:

人类角膜基质的开发,结构和生物工程:基于胶原的植入物的综述

目前,生物工程技术被用于生产仿生人造角膜,其应具有接近天然组织的结构,化学,光学和生物力学特性。这些特性主要由占角膜厚度90%的角膜基质支持,并且主要由I型胶原制成。基质胶原原纤维排列在具有胶合板状组织的薄片中。原纤维直径在25至35nm之间,且原纤维间空间约为57nm。中央基质中的薄片数量估计为300。在前部,它们的大小为10–40μm。它们在基质的后部似乎更大,大小为60-120μm。它们的厚度也从0.2至2.5μm变化。在发育过程中,无细胞角膜基质 它具有复杂的组织模式,可作为间充质细胞的支架,使间质细胞侵入并进一步产生细胞基质。除了包括母带基因Pax-6的EFTF以外,包括Bmp4,Wnt /β-catenin,Notch,视黄酸和TGF-β在内的几种途径也参与了角膜的发育。此外,视黄酸和TGF-β似乎在基质中神经rest细胞迁移中起关键作用。可以使用几种技术来产生人造基质。利用酸溶性胶原的液晶性质,可以产生具有天然的胶原I原纤维和胶合板样组织的透明基质样基质,其中上皮细胞可以粘附并增殖。其他方法包括使用重组胶原蛋白,交联剂,玻璃化,可塑性压缩的胶原蛋白或磁性排列的胶原蛋白,可提供有趣的光学和机械性能。这些技术可以根据胶原蛋白的类型和来源,端肽和天然类原纤维的存在,结构和透明度进行分类。对于适当的500-μm厚度,胶原蛋白基质的透明度> 80%。已经开发了由包括明胶,丝或鱼鳞的生物聚合物制成的非胶原基质,这些基质具有令人感兴趣的特性,但具有较少的仿生性。这些生物工程基质仍然需要被基质细胞定植,以完全繁殖天然基质。端肽和类似天然纤维的结构,透明度。对于适当的500-μm厚度,胶原蛋白基质的透明度> 80%。已经开发了由包括明胶,丝或鱼鳞的生物聚合物制成的非胶原基质,这些基质具有令人感兴趣的特性,但具有较少的仿生性。这些生物工程基质仍然需要被基质细胞定植,以完全繁殖天然基质。端肽和类似天然纤维的结构,透明度。对于适当的500-μm厚度,胶原蛋白基质的透明度> 80%。已经开发了由包括明胶,丝或鱼鳞的生物聚合物制成的非胶原基质,这些基质具有令人感兴趣的特性,但具有较少的仿生性。这些生物工程基质仍然需要被基质细胞定植,以完全繁殖天然基质。

更新日期:2020-09-25
down
wechat
bug