当前位置: X-MOL 学术Strain › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
One-step deposition of nano-to-micron-scalable, high-quality digital image correlation patterns for high-strain in-situ multi-microscopy testing
Strain ( IF 2.1 ) Pub Date : 2019-08-30 , DOI: 10.1111/str.12330
J.P.M. Hoefnagels 1 , M.P.F.H.L. van Maris 1 , T. Vermeij 1
Affiliation  

Digital Image Correlation (DIC) is of vital importance in the field of experimental mechanics, yet, producing suitable DIC patterns for challenging in-situ mechanical tests remains challenging, especially for ultra-fine patterns, despite the large number of patterning techniques in the literature. Therefore, we propose a simple, flexible, one-step technique (only requiring a conventional deposition machine) to obtain scalable, high-quality, robust DIC patterns, suitable for a range of microscopic techniques, by deposition of a low melting temperature solder alloy in so-called 'island growth' mode, without elevating the substrate temperature. Proof of principle is shown by (near-)room-temperature deposition of InSn patterns, yielding highly dense, homogeneous DIC patterns over large areas with a feature size that can be tuned from as small as 10nm to 2um and with control over the feature shape and density by changing the deposition parameters. Pattern optimization, in terms of feature size, density, and contrast, is demonstrated for imaging with atomic force microscopy, scanning electron microscopy (SEM), optical microscopy and profilometry. Moreover, the performance of the InSn DIC patterns and their robustness to large deformations is validated in two challenging case studies of in-situ micro-mechanical testing: (i) self-adaptive isogeometric digital height correlation of optical surface height profiles of a coarse, bimodal InSn pattern providing microscopic 3D deformation fields (illustrated for delamination of aluminum interconnects on a polyimide substrate) and (ii) DIC on SEM images of a much finer InSn pattern allowing quantification of high strains near fracture locations (illustrated for rupture of a Fe foil). As such, the high controllability, performance and scalability of the DIC patterns offers a promising step towards more routine DIC-based in-situ micro-mechanical testing.

中文翻译:

用于高应变原位多显微镜测试的纳米到微米可缩放的高质量数字图像相关模式的一步沉积

数字图像相关 (DIC) 在实验力学领域至关重要,然而,尽管文献中有大量的图案化技术,但为具有挑战性的原位力学测试生成合适的 DIC 图案仍然具有挑战性,尤其是对于超精细图案. 因此,我们提出了一种简单、灵活、一步到位的技术(仅需要传统的沉积机),通过沉积低熔点焊料合金,获得适用于一系列显微技术的可扩展、高质量、稳健的 DIC 图案在所谓的“岛状生长”模式下,不会升高基板温度。InSn 图案的(近)室温沉积证明了原理,产生高密度,大面积上的均匀 DIC 图案,其特征尺寸可以从 10 纳米到 2 微米进行调整,并且可以通过改变沉积参数来控制特征形状和密度。在使用原子力显微镜、扫描电子显微镜 (SEM)、光学显微镜和轮廓测量法成像时,在特征尺寸、密度和对比度方面展示了图案优化。此外,InSn DIC 图案的性能及其对大变形的鲁棒性在两个具有挑战性的原位微机械测试案例研究中得到验证:(i) 粗糙的光学表面高度轮廓的自适应等几何数字高度相关性,双峰 InSn 图案提供微观​​ 3D 变形场(图示为聚酰亚胺基板上铝互连的分层)和(ii)更精细 InSn 图案的 SEM 图像上的 DIC,允许量化断裂位置附近的高应变(图示为 Fe 箔的破裂) )。因此,DIC 模式的高可控性、性能和可扩展性为更常规的基于 DIC 的原位微机械测试提供了有希望的一步。
更新日期:2019-08-30
down
wechat
bug