当前位置: X-MOL 学术N. Z. J. Mar. Freshw. Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Lake resilience: concept, observation and management
New Zealand Journal of Marine and Freshwater Research ( IF 1.6 ) Pub Date : 2019-07-28 , DOI: 10.1080/00288330.2019.1647855
Deniz Özkundakci 1, 2 , Moritz K. Lehmann 2, 3
Affiliation  

Worldwide, lake ecosystems face threats arising from multiple pressures, related to nutrient runoff (Abell et al. 2011), biological invasions (MacIsaac et al. 2004), hydrological modifications (Zohary and Ostrovsky 2011), exploitation of edible aquatic life (Youn et al. 2014) and climate change (Adrian et al. 2009). New Zealand boasts a great diversity of lakes, which are of cultural importance and environmental, social and economic significance. Their ecosystem services include the provision of water for various purposes, including power generation, transportation, fisheries, tourism, and recreational enjoyment (Schallenberg et al. 2013). Many lakes in New Zealand have been under increasing anthropogenic pressures such as the intensification of land use, urbanisation and the introduction of invasive species. Declining water quality, biodiversity loss, and cyanobacteria blooms are now observed frequently (Ministry for the Environment and StatsNZ 2017; David et al. 2018). In this special issue, attention is directed towards the implications of those pressures for lake ecosystem dynamics, under the unifying theme of ‘Lake Resilience’. This issue presents a series of forum and research papers promoting a better understanding of resilience mechanisms through the integration of applied research in a multidisciplinary framework. Resilience is defined as the ability of a system to maintain its state by absorbing both internal and external change and disturbances to its state variables, driving variables, and parameters (Holling 1973; Cumming et al. 2005). Resilience can be described mathematically as a property of nonlinear systems in which perturbations may move the system away from a point of equilibrium, but after the perturbation, balance is restored and the system returns to this steady state. Lake ecosystems, like most natural systems, have the capacity to maintain their natural ecological state when exposed to some level of pressure. For example, a moderately small gradual development in a lake’s catchment can increase nutrient inputs without causing concomitant deterioration of water quality. A lake with the ability to maintain its state in the face of both internal change and external shocks and disturbances is said to be resilient (Carpenter and Cottingham 1997). All possible ecosystem states may be thought of as a multidimensional surface where troughs and peaks represent stable and unstable steady states. This can be visualised by a marble moving around a three-dimensional surface (see cover image to this special issue for an abstract representation of this concept) or, simpler, as a marble on a two-dimensional track (Figure 1). A marble, representing current ecosystem state, would be drawn to troughs in which case resilience would be analogous to the depth of a depression that keeps an

中文翻译:

湖泊恢复力:概念、观察和管理

在世界范围内,湖泊生态系统面临着多种压力带来的威胁,这些压力与养分流失(Abell 等人,2011 年)、生物入侵(MacIsaac 等人,2004 年)、水文变化(Zohary 和 Ostrovsky 2011 年)、可食用水生生物的开发(Youn 等人,2011 al. 2014)和气候变化(Adrian et al. 2009)。新西兰拥有种类繁多的湖泊,这些湖泊具有重要的文化意义和环境、社会和经济意义。它们的生态系统服务包括为各种目的提供水,包括发电、运输、渔业、旅游和娱乐(Schallenberg 等人,2013 年)。新西兰的许多湖泊都承受着越来越大的人为压力,例如土地利用的集约化、城市化和入侵物种的引入。水质下降,生物多样性丧失,现在经常观察到蓝藻大量繁殖(环境部和新西兰统计局,2017 年;大卫等人,2018 年)。在本期特刊中,以“湖泊恢复力”为统一主题,关注这些压力对湖泊生态系统动态的影响。本期发布了一系列论坛和研究论文,通过在多学科框架中整合应用研究,促进对复原力机制的更好理解。弹性被定义为系统通过吸收内部和外部变化以及对其状态变量、驱动变量和参数的干扰来维持其状态的能力(Holling 1973;Cumming 等,2005)。弹性可以在数学上被描述为非线性系统的一种属性,其中扰动可能会使系统远离平衡点,但在扰动之后,平衡恢复并且系统返回到这个稳定状态。与大多数自然系统一样,湖泊生态系统在承受一定压力时有能力维持其自然生态状态。例如,湖泊集水区的适度小规模渐进式开发可以增加养分输入,而不会导致水质随之恶化。一个能够在面对内部变化和外部冲击和干扰时保持其状态的湖泊被认为是有弹性的(Carpenter 和 Cottingham 1997)。所有可能的生态系统状态都可以被认为是一个多维表面,其中波谷和波峰代表稳定和不稳定的稳态。这可以通过一个弹珠在 3 维表面上移动来可视化(有关此概念的抽象表示,请参见本期特刊的封面图片),或者更简单地,将弹珠视为二维轨道上的弹珠(图 1)。代表当前生态系统状态的大理石将被吸引到低谷,在这种情况下,弹性将类似于保持低谷的深度
更新日期:2019-07-28
down
wechat
bug