当前位置: X-MOL 学术Quat. Geochronol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Cosmogenic 3He exposure ages of basaltic flows from Miller Knoll, Panguitch Lake, Utah: Using the alternative isochron approach to overcome low-gas crushes
Quaternary Geochronology ( IF 2.7 ) Pub Date : 2019-11-02 , DOI: 10.1016/j.quageo.2019.101035
David W. Marchetti , Allen L. Stork , D. Kip Solomon , Thure E. Cerling , Wil Mace

Determining the ages of young volcanic rocks is important for understanding the tectono-magmatic development of geologic terranes. Usually, if rocks are old enough the 40Ar/39Ar or K–Ar techniques can provide reliable ages. However, when rocks are younger, they often lack enough daughter product to resolve an age. Cosmogenic 3He methods provide an alternative for determining the eruption age of relatively recent mafic/intermediate lava flows. We sampled morphologically young basaltic andesite flows south of Miller Knoll, near Panguitch Lake on the Markagunt Plateau in southern Utah. We took two samples in close proximity from two different areas on the flows and separated both olivine and pyroxene. The typical protocol is to crush mineral separates on-line to determine an inclusion-hosted magmatic 3He/4He component. Then the powders are heated in a furnace to release the total 3He and 4He component and the crushed component is subtracted to determine the cosmogenic 3He component. Unfortunately, in the case of the Miller Lake flows, 3He yield from on-line crushes was below detection. An alternative isochron approach, which obviates the need for crush data, was first described by Cerling and Craig (1994) and more fully by Blard and Pik (2008). In this approach the 3He/4He of the total gas released from furnace heating is plotted vs. 1/4He. If the samples plot on a line, then the resulting y-intercept is the magmatic 3He/4He and the slope of the line is the cosmogenic 3He component, which determines the exposure age. Our data create good isochrons (MSWD = 0.76 and 0.14) with magmatic 3He/4He of 4.7–4.9 Ra. Concentrations of cosmogenic 3He are 2.13 and 2.61 × 107 atoms g−1after correction for radiometric 4He using the R correction factor and measured and estimated U and Th concentrations in whole rock and minerals, respectively. Using the LSDn scaling routine and an online exposure age calculator, we determine zero erosion exposure ages of 32 ± 3 ka for the upper part of the flow and 34 ± 4 ka for the lower part of the flow.



中文翻译:

宇宙成因3 He暴露于犹他州Panguitch Lake的Miller Knoll的玄武岩流的年龄:使用替代等时线方法克服低瓦斯压碎

确定年轻火山岩的年龄对于了解地质地形的构造-岩浆发育很重要。通常,如果岩石年龄足够大,则40 Ar / 39 Ar或K–Ar技术可以提供可靠的年龄。但是,当岩石年轻时,它们通常缺乏足够的子产物来解决年龄问题。宇宙产生的3他的方法为确定相对较新的镁铁质/中间熔岩流的爆发年龄提供了一种替代方法。我们在犹他州南部Markagunt高原的Panguitch湖附近的Miller Knoll南部采样了形态学上年轻的玄武岩安山岩流。我们从流动的两个不同区域非常接近地采集了两个样品,并分离了橄榄石和辉石。典型的方案是在线破碎矿物分离物,以确定包含夹杂物的岩浆3 He / 4 He组分。然后将粉末在熔炉中加热,以释放出总的3 He和4 He组分,然后减去压碎的组分,确定产生宇宙的3他组成。不幸的是,就Miller Lake流量而言,在线压碎的3 He产量低于检测值。Cerling和Craig(1994)首先描述了一种替代等时同步方法,该方法无需获取压碎数据,而Blard和Pik(2008)则更全面地介绍了这种方法。在这种方法中,绘制了从炉子加热释放的总气体中的3 He / 4 He对1/4 He。如果样本在一条线上绘制,则最终的y轴截距是岩浆3 He / 4 He,而线的斜率是宇宙成因3 He分量,它决定了暴露年龄。我们的数据在岩浆3 He /时产生了良好的等时线(MSWD = 0.76和0.14)4 He为4.7–4.9 Ra。在使用R校正因子对辐射4 He进行校正后,宇宙岩石中3 He的浓度分别为2.13和2.61×10 7个原子g -1 g -1,并且分别测量和估计了整个岩石和矿物中的U和Th浓度。使用LSDn缩放例程和在线暴露年龄计算器,我们确定流的上部零侵蚀暴露年龄为32±3 ka,下部为34±4 ka。

更新日期:2019-11-02
down
wechat
bug