当前位置: X-MOL 学术Nano. Commun. Netw. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Sum rate analysis of multiple-access neuro-spike communication channel with dynamic spiking threshold
Nano Communication Networks ( IF 2.9 ) Pub Date : 2019-01-14 , DOI: 10.1016/j.nancom.2019.01.002
Tooba Khan , Ozgur B. Akan

The information from outside world is encoded into spikes by the sensory neurons. These spikes are further propagated to different brain regions through various neural pathways. In the cortical region, each neuron receives inputs from multiple neurons that change its membrane potential. If the accumulated change in the membrane potential is more than a threshold value, a spike is generated. According to various studies in neuroscience, this spiking threshold adapts with time depending on the previous spike. This causes short-term changes in the neural responses giving rise to short-term plasticity. Therefore, in this paper, we analyze a multiple-input single-output (MISO) neuro-spike communication channel and study the effects of dynamic spiking threshold on mutual information and maximum achievable sum rate of the channel. Since spike generation consumes a generous portion of the metabolic energy provided to the brain, we further put metabolic constraint in calculating the mutual information and find a trade-off between maximum achievable sum rate and metabolic energy consumed. Moreover, we analyze three types of neurons present in the cortical region, i.e., Regular spiking, Intrinsic bursting and Fast spiking neurons. We aim to characterize these neurons in terms of encoding/transmission rates and energy expenditure. It will provide a guideline for the practical implementation of bio-inspired nanonetworks as well as for the development of ICT-based diagnosis and treatment techniques for neural diseases.



中文翻译:

具有动态峰值阈值的多路访问神经峰值通信通道的总速率分析

感觉神经元将来自外界的信息编码为峰值。这些尖峰通过各种神经途径进一步传播到不同的大脑区域。在皮层区域,每个神经元都接收来自多个神经元的输入,这些输入会改变其膜电位。如果膜电位的累积变化大于阈值,则产生尖峰。根据神经科学方面的各种研究,该尖峰阈值会根据之前的峰值随时间变化。这引起神经反应的短期变化,引起短期可塑性。因此,在本文中,我们分析了多输入单输出(MISO)神经峰值通信通道,并研究了动态峰值阈值对互信息和通道的最大可实现速率的影响。由于尖峰的产生消耗了提供给大脑的大部分代谢能,因此我们在计算互信息时进一步考虑了代谢限制,并在最大可实现的总消耗率和消耗的代谢能之间进行了权衡。此外,我们分析了存在于皮质区域的三种类型的神经元,即规则尖峰,内在爆发和快速尖峰神经元。我们旨在通过编码/传输速率和能量消耗来表征这些神经元。它将为生物启发性的纳米网络的实际实施以及开发基于ICT的神经疾病诊断和治疗技术提供指导。我们进一步将代谢限制条件用于计算互信息,并在最大可实现的总和与消耗的代谢能量之间进行权衡。此外,我们分析了存在于皮质区域的三种类型的神经元,即规则尖峰,内在爆发和快速尖峰神经元。我们旨在通过编码/传输速率和能量消耗来表征这些神经元。它将为生物启发性的纳米网络的实际实施以及开发基于ICT的神经疾病诊断和治疗技术提供指导。我们进一步将代谢限制条件用于计算互信息,并在最大可实现的总速率和消耗的代谢能量之间进行权衡。此外,我们分析了存在于皮质区域的三种类型的神经元,即规则尖峰,内在爆发和快速尖峰神经元。我们旨在通过编码/传输速率和能量消耗来表征这些神经元。它将为生物启发性的纳米网络的实际实施以及开发基于ICT的神经疾病诊断和治疗技术提供指导。我们旨在通过编码/传输速率和能量消耗来表征这些神经元。它将为生物启发性的纳米网络的实际实施以及基于ICT的神经疾病诊断和治疗技术的发展提供指南。我们旨在通过编码/传输速率和能量消耗来表征这些神经元。它将为生物启发性的纳米网络的实际实施以及开发基于ICT的神经疾病诊断和治疗技术提供指导。

更新日期:2019-01-14
down
wechat
bug