当前位置: X-MOL 学术Geomech. Geophys. Geo-energ. Geo-resour. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Excavation based enhanced geothermal system (EGS-E): introduction to a new concept
Geomechanics and Geophysics for Geo-Energy and Geo-Resources ( IF 5 ) Pub Date : 2019-11-04 , DOI: 10.1007/s40948-019-00127-y
J. Zhao , C. A. Tang , S. J. Wang

The current technology for enhanced geothermal system (EGS) typically involves drilling of deep injection and production wells to inject cold water into the injection well to the EGS reservoir depth, to extract heat by permeating through the fractured hot rock masses, collected by the production well and return to the surface as heated water. In this article, a new approach is proposed to develop EGS based excavation technology (EGS-E). This method consists of (1) excavation to deep rocks, including a deep shaft from surface to the EGS depth, a room-and-pillar mined cavern complex to be filled with water to become a large underground heated water reservoir in the hot rocks; (2) enhanced heat extraction from rock, aided by additional drillholes spreading out and down from the caverns, and induced fracturing of the surrounding rocks for enhanced rock–water heat transfer; (3) enclosed heat transmission from heated water reservoir to the power plant by using independent heat conducting pipes running between them, continuously supplying the heat for power generation, without water movement in the reservoir. EGS-E offers the following advantages: (1) utilizing mechanized rock excavation technology for large volume energy production; (2) greatly increasing heat extraction volume by easily extending vertically and horizontally; (3) maximize the energy transfer from hot rock to the water reservoir; and (4) separated heat transmission from heated water reservoir in EGS to power plant to minimize environmental pollution.

中文翻译:

基于挖掘的增强型地热系统(EGS-E):新概念的介绍

当前用于增强地热系统(EGS)的技术通常包括钻探深层注入井和生产井,以将冷水注入注入井至EGS储层深度,通过渗透通过裂缝热岩体提取热量,这些热量由生产井收集并以热水的形式返回地面。在本文中,提出了一种新方法来开发基于EGS的挖掘技术(EGS-E)。该方法包括:(1)开挖深层岩石,包括从地表到EGS深度的深井,将充水的房间和柱子开采的洞穴复合体变成热岩石中的大型地下热水储层;(2)通过从洞穴中向下扩散的额外钻孔来增强岩石的热量吸收,并引起围岩破裂,以增强岩水的热传递;(3)通过使用在它们之间运行的独立导热管,从热水水箱到发电厂的封闭式传热,不断地提供热量用于发电,而水在水箱中没有流动。EGS-E具有以下优点:(1)利用机械化岩石开挖技术进行大量能源生产;(2)易于垂直和水平延伸,大大增加了排热量;(3)最大化从热岩到水库的能量传递;(4)将热量从EGS的热水蓄水池传到发电厂,以最大程度地减少环境污染。(3)通过使用在它们之间运行的独立导热管将封闭的热量从热水储罐传递到发电厂,从而不断地提供热量用于发电,而水在储罐中没有流动。EGS-E具有以下优点:(1)利用机械化岩石开挖技术进行大量能源生产;(2)易于垂直和水平延伸,大大增加了排热量;(3)最大化从热岩到水库的能量传递;(4)将热量从EGS的热水储藏区分离到发电厂,以最大程度地减少环境污染。(3)通过使用在它们之间运行的独立导热管,从热水水箱到发电厂的封闭式传热,不断地提供热量用于发电,而水在水箱中没有流动。EGS-E具有以下优点:(1)利用机械化岩石开挖技术进行大量能源生产;(2)易于垂直和水平延伸,大大增加了排热量;(3)最大化从热岩到水库的能量传递;(4)将热量从EGS的热水储藏区分离到发电厂,以最大程度地减少环境污染。(1)利用机械化岩石开挖技术大量生产能源;(2)易于垂直和水平延伸,大大增加了排热量;(3)最大化从热岩到水库的能量传递;(4)将热量从EGS的热水储藏区分离到发电厂,以最大程度地减少环境污染。(1)利用机械化岩石开挖技术大量生产能源;(2)易于垂直和水平延伸,大大增加了排热量;(3)最大化从热岩到水库的能量传递;(4)将热量从EGS的热水储藏区分离到发电厂,以最大程度地减少环境污染。
更新日期:2019-11-04
down
wechat
bug