当前位置: X-MOL 学术Energy Environ. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Li-rich cathodes for rechargeable Li-based batteries: reaction mechanisms and advanced characterization techniques
Energy & Environmental Science ( IF 32.5 ) Pub Date : 2020-09-20 , DOI: 10.1039/d0ee01694b
Wenhua Zuo 1, 2, 3, 4 , Mingzeng Luo 1, 2, 3, 4 , Xiangsi Liu 1, 2, 3, 4 , Jue Wu 1, 2, 3, 4 , Haodong Liu 5, 6, 7, 8 , Jie Li 9, 10, 11, 12, 13 , Martin Winter 9, 10, 11, 12, 14 , Riqiang Fu 8, 15, 16 , Wanli Yang 8, 17, 18, 19 , Yong Yang 1, 2, 3, 4
Affiliation  

Due to their high specific capacities beyond 250 mA h g−1, lithium-rich oxides have been considered as promising cathodes for the next generation power batteries, bridging the capacity gap between traditional layered-oxide based lithium-ion batteries and future lithium metal batteries such as lithium sulfur and lithium air batteries. However, the practical application of Li-rich oxides has been hindered by formidable challenges. To address these challenges, the understanding of their electrochemical behaviors becomes critical and is expected to offer effective guidance for both materials and cell development. This review aims to provide fundamental insights into the reaction mechanisms, electrochemical challenges and modification strategies of lithium-rich oxides. We first summarize the research history, the pristine structures, and the classification of lithium-rich oxides. Then we review the critical reaction mechanisms that are closely related to their electrochemical features and performances, such as lattice oxygen oxidation, oxygen vacancy formation, transition-metal migration, layered to spinel transitions, ‘two-phase mechanism’, and lattice evolution. These discussions are coupled with state-of-the-art characterization techniques. As a comparison, the anionic redox reactions of layered sodium transition metal oxides are also discussed. Finally, after a brief overview of the correlation among the aforementioned mechanisms, we provide perspectives on the rational design of lithium-rich oxides with high energy densities and long-term cycling stability.

中文翻译:

可充电锂基电池的富锂阴极:反应机理和先进的表征技术

由于它们的高比容量超过250 mA hg -1富锂氧化物被认为是下一代动力电池的理想阴极,弥合了传统的基于层状氧化物的锂离子电池与未来的锂金属电池(如锂硫和锂空气电池)之间的容量差距。但是,富锂氧化物的实际应用受到了巨大挑战的阻碍。为了应对这些挑战,对它们的电化学行为的理解变得至关重要,并且有望为材料和电池开发提供有效的指导。这篇综述旨在提供对富锂氧化物的反应机理,电化学挑战和改性策略的基本见解。我们首先总结研究历史,原始结构和富锂氧化物的分类。然后,我们回顾了与它们的电化学特征和性能密切相关的关键反应机理,例如晶格氧氧化,氧空位形成,过渡金属迁移,层状尖晶石过渡,“两相机理”和晶格演化。这些讨论与最新的表征技术结合在一起。作为比较,还讨论了层状钠过渡金属氧化物的阴离子氧化还原反应。最后,在简要概述了上述机制之间的相关性之后,我们提供了有关合理设计具有高能量密度和长期循环稳定性的富锂氧化物的观点。过渡金属迁移,分层到尖晶石过渡,“两相机制”和晶格演化。这些讨论与最新的表征技术结合在一起。作为比较,还讨论了层状钠过渡金属氧化物的阴离子氧化还原反应。最后,在简要概述了上述机制之间的相关性之后,我们提供了有关合理设计具有高能量密度和长期循环稳定性的富锂氧化物的观点。过渡金属迁移,分层到尖晶石过渡,“两相机制”和晶格演化。这些讨论与最新的表征技术结合在一起。作为比较,还讨论了层状钠过渡金属氧化物的阴离子氧化还原反应。最后,在简要概述了上述机制之间的相关性之后,我们提供了有关合理设计具有高能量密度和长期循环稳定性的富锂氧化物的观点。
更新日期:2020-11-03
down
wechat
bug