当前位置: X-MOL 学术arXiv.cs.CE › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Broadband Finite-Element Impedance Computation for Parasitic Extraction
arXiv - CS - Computational Engineering, Finance, and Science Pub Date : 2020-09-17 , DOI: arxiv-2009.08232
Jonathan Stysch, Andreas Klaedtke and Herbert De Gersem

Parasitic extraction is a powerful tool in the design process of electromechanical devices, specifically as part of workflows that ensure electromagnetic compatibility. A novel scheme to extract impedances from CAD device models, suitable for a finite element implementation, is derived from Maxwell's equations in differential form. It provides a foundation for parasitic extraction across a broad frequency range and is able to handle inhomogeneous permittivities and permeabilities, making it more flexible than existing integral equation approaches. The approach allows for the automatic treatment of multi-port models of arbitrary conductor geometry without requiring any significant manual user interference. This is achieved by computing a special source current density from its given divergence on chosen terminal surfaces, subsequently using this current density to compute the electric field, and finally calculating the impedance via a scalar potential. A mandatory low-frequency stabilization scheme is outlined, facilitating the finite element implementation. Two useful quasistatic approximations and the advantageous special case of perfect electric conductors are treated theoretically. The magnetoquasistatic approximation is validated against an analytical model in a numerical experiment. Moreover, the intrinsic capability of the method to treat inhomogeneous permittivities and permeabilities is demonstrated with a simple capacitor-coil model including dielectric and magnetic core materials.

中文翻译:

用于寄生提取的宽带有限元阻抗计算

寄生提取是机电设备设计过程中的强大工具,特别是作为确保电磁兼容性的工作流程的一部分。一种从 CAD 设备模型中提取阻抗的新方案,适用于有限元实现,源自麦克斯韦方程的微分形式。它为宽频率范围内的寄生提取提供了基础,并且能够处理不均匀的介电常数和磁导率,使其比现有的积分方程方法更灵活。该方法允许自动处理任意导体几何形状的多端口模型,而无需任何显着的手动用户干预。这是通过根据所选终端表面上的给定发散计算特殊源电流密度来实现的,随后使用该电流密度来计算电场,最后通过标量电位计算阻抗。概述了强制性的低频稳定方案,促进了有限元的实施。理论上处理了两个有用的准静态近似和完美电导体的有利特例。在数值实验中针对分析模型验证了磁准静态近似。此外,该方法处理非均匀介电常数和磁导率的内在能力通过一个简单的电容器线圈模型(包括电介质和磁芯材料)来证明。促进有限元实现。理论上处理了两个有用的准静态近似和完美电导体的有利特例。在数值实验中针对分析模型验证了磁准静态近似。此外,该方法处理非均匀介电常数和磁导率的内在能力通过一个简单的电容器线圈模型(包括电介质和磁芯材料)来证明。促进有限元实现。理论上处理了两个有用的准静态近似和完美电导体的有利特例。在数值实验中针对分析模型验证了磁准静态近似。此外,该方法处理非均匀介电常数和磁导率的内在能力通过一个简单的电容器线圈模型(包括电介质和磁芯材料)来证明。
更新日期:2020-09-18
down
wechat
bug