当前位置: X-MOL 学术Mon. Not. R. Astron. Soc. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Resolving shocks and filaments in galaxy formation simulations: effects on gas properties and star formation in the circumgalactic medium
Monthly Notices of the Royal Astronomical Society ( IF 4.8 ) Pub Date : 2020-09-18 , DOI: 10.1093/mnras/staa2835
Jake S Bennett 1, 2 , Debora Sijacki 1, 2
Affiliation  

There is an emerging consensus that large amounts of gas do not shock heat in the circumgalactic medium (CGM) of massive galaxies, but instead pierce deep into haloes from the cosmic web via filaments. To better resolve this process numerically, we have developed a novel `shock refinement' scheme within the moving mesh code AREPO that adaptively improves resolution around shocks on-the-fly in galaxy formation simulations. We apply this to a massive $\sim10^{12}$ M$_\odot$ halo at $z=6$ using the successful FABLE model, increasing the mass resolution by a factor of 512. With better refinement there are significantly more dense, metal-poor and fast-moving filaments and clumps flowing into the halo, leading to a more multiphase CGM. We find a $\sim50$ per cent boost in cool-dense gas mass and a 25 per cent increase in inflowing mass flux. Better resolved accretion shocks cause turbulence to increase dramatically, leading to a doubling in the halo's non-thermal pressure support. Despite much higher thermalisation at shocks with higher resolution, increased cooling rates suppress the thermal energy of the halo. In contrast, the faster and denser filaments cause a significant jump in the bulk kinetic energy of cool-dense gas, while in the hot phase turbulent energy increases by up to $\sim150$ per cent. Moreover, HI covering fractions within the CGM increase by up to 60 per cent. Consequently star formation is spread more widely and we predict a population of metal-poor stars forming within primordial filaments that deep JWST observations may be able to probe.

中文翻译:

解决星系形成模拟中的冲击和细丝:对环绕星系介质中气体特性和恒星形成的影响

一个新兴的共识是,大量气体不会在大质量星系的环绕星系介质 (CGM) 中激起热量,而是通过细丝深入宇宙网中的晕圈。为了在数值上更好地解决这个过程,我们在移动网格代码 AREPO 中开发了一种新颖的“冲击细化”方案,可自适应地提高星系形成模拟中动态冲击周围的分辨率。我们使用成功的 FABLE 模型将其应用于 $z=6$ 处的巨大 $\sim10^{12}$M$_\odot$ 晕圈,将质量分辨率提高了 512 倍。通过更好的细化,有更多密集、贫金属和快速移动的细丝和团块流入光晕,导致更多的多相 CGM。我们发现冷密气体质量增加了 $\sim50$%,流入的质量通量增加了 25%。更好解决的吸积冲击会导致湍流急剧增加,导致晕的非热压力支持加倍。尽管在分辨率更高的冲击下热化程度更高,但增加的冷却速率会抑制光晕的热能。相比之下,速度更快、密度更大的细丝会导致冷密气体的体积动能显着增加,而在热相中,湍流能增加高达 $\sim150$%。此外,CGM 内的 HI 覆盖部分增加了 60%。因此,恒星形成的范围更广,我们预测在原始细丝中形成的贫金属恒星群可能会被深度 JWST 观测所探测到。s 非热压力支持。尽管在分辨率更高的冲击下热化程度更高,但增加的冷却速率会抑制光晕的热能。相比之下,速度更快、密度更大的细丝会导致冷密气体的体积动能显着增加,而在热相中,湍流能增加高达 $\sim150$%。此外,CGM 内的 HI 覆盖部分增加了 60%。因此,恒星形成的范围更广,我们预测在原始细丝中形成的贫金属恒星群可能会被深度 JWST 观测所探测到。s 非热压力支持。尽管在分辨率更高的冲击下热化程度更高,但增加的冷却速率会抑制光晕的热能。相比之下,速度更快、密度更大的细丝会导致冷密气体的体积动能显着增加,而在热相中,湍流能增加高达 $\sim150$%。此外,CGM 内的 HI 覆盖部分增加了 60%。因此,恒星形成的范围更广,我们预测在原始细丝中形成的贫金属恒星群可能会被深度 JWST 观测所探测到。更快和更密的细丝导致冷密气体的体积动能显着跳跃,而在热相中,湍流能增加高达 $\sim150$%。此外,CGM 内的 HI 覆盖部分增加了 60%。因此,恒星形成的范围更广,我们预测在原始细丝中形成的贫金属恒星群可能会被深度 JWST 观测所探测到。更快和更密的细丝导致冷密气体的体积动能显着跳跃,而在热相中,湍流能增加高达 $\sim150$%。此外,CGM 内的 HI 覆盖部分增加了 60%。因此,恒星形成的范围更广,我们预测在原始细丝中形成的贫金属恒星群可能会被深度 JWST 观测所探测到。
更新日期:2020-09-18
down
wechat
bug